Abstract. Today it is evident that there are many contrasting demands on our landscape (e.g. food security, more sustainable agriculture, higher income in rural areas, etc.) as well as many land degradation problems. It has been proved that providing operational answers to these demands and problems is extremely difficult. Here we aim to demonstrate that a spatial decision support system based on geospatial cyberinfrastructure (GCI) can address all of the above, so producing a smart system for supporting decision making for agriculture, forestry, and urban planning with respect to the landscape. In this paper, we discuss methods and results of a special kind of GCI architecture, one that is highly focused on land management and soil conservation. The system allows us to obtain dynamic, multidisciplinary, multiscale, and multifunctional answers to agriculture, forestry, and urban planning issues through the Web. The system has been applied to and tested in an area of about 20 000 ha in the south of Italy, within the framework of a European LIFE+ project (SOILCONSWEB). The paper reports – as a case study – results from two different applications dealing with agriculture (olive growth tool) and environmental protection (soil capability to protect groundwater). Developed with the help of end users, the system is starting to be adopted by local communities. The system indirectly explores a change of paradigm for soil and landscape scientists. Indeed, the potential benefit is shown of overcoming current disciplinary fragmentation over landscape issues by offering – through a smart Web-based system – truly integrated geospatial knowledge that may be directly and freely used by any end user (www.landconsultingweb.eu). This may help bridge the last very important divide between scientists working on the landscape and end users.
Abstract. Today it is evident that there are many contrasting demands on our landscape (e.g. food security, more sustainable agriculture, higher income in rural areas, etc.) but also many land degradation problems. It has been proved that providing operational answers to these demands and problems is extremely difficult. Here we aim to demonstrate that a Spatial Decision Support System based on geospatial cyber-infrastructure (GCI) can embody all of the above, so producing a smart system for supporting decision making for agriculture, forestry and urban planning with respect to the landscape. In this paper, we discuss methods and results of a special kind of GCI architecture, one that is highly focused on soil and land conservation (SOILCONSWEB-LIFE+ project). The system allows us to obtain dynamic, multidisciplinary, multiscale, and multifunctional answers to agriculture, forestry and urban planning issues through the web. The system has been applied to and tested in an area of about 20 000 ha in the South of Italy, within the framework of a European LIFE+ project. The paper reports – as a case study – results from two different applications dealing with agriculture (olive growth tool) and environmental protection (soil capability to protect groundwater). Developed with the help of end users, the system is starting to be adopted by local communities. The system indirectly explores a change of paradigm for soil and landscape scientists. Indeed, the potential benefit is shown of overcoming current disciplinary fragmentation over landscape issues by offering – through a smart web based system – truly integrated geospatial knowledge that may be directly and freely used by any end user (http://www.landconsultingweb.eu). This may help bridge the last much important divide between scientists working on the landscape and end users.
Alfalfa is a highly productive and fertility-building forage crop; its performance, can be highly variable as influenced by within-field soil spatial variability. Characterising the relations between soil and forage-variation is important for optimal management. The aim of this work was to model the relationship between soil electrical resistivity (ER) and plant productivity in an alfalfa (Medicago sativa L.) field in Southern Italy. ER mapping was accomplished by a multi-depth automatic resistivity profiler. Plant productivity was assessed through normalised difference vegetation index (NDVI) at 2 dates. A non-linear relationship between NDVI and deep soil ER was modelled within the framework of generalised additive models. The best model explained 70% of the total variability. Soil profiles at six locations selected along a gradient of ER showed differences related to texture (ranging from clay to sandy-clay loam), gravel content (0 to 55%) and to the presence of a petrocalcic horizon. Our results prove that multi-depth ER can be used to localise permanent soil features that drive plant productivity.
<p>Soil sealing is considered one of the most dangerous land degradation processes on global, European and national scales. Numerous policies aiming to mitigate this soil threat testify the importance of the phenomenon, which however is continuously growing, or at least does not shows signs of abating. Here we would show a spatial decision support system (S-DSS) &#8211; based on a Geospatial Cyberinfrastructure &#8211; with the aim of applying it as an operational instrument aiming towards soil sealing mitigation. The system developed within the framework of the LANDSUPPORT EU project (www.landsupport.eu) started on May 2018 has the ambition to impact on those who take decision over soil sealing issues.&#160; It currently represents an evolution of a previous S-DSS tool named Soil sealing and landscape planning, still operational and described in a scientific publication (https://doi.org/10.1002/ldr.2802). The system, focusing on mitigating such crucial land degradation, allows the users - freely and via the Web &#8211; to produce &#8216;what-if&#8217; land planning scenarios thanks to the &#8216;on-the-fly&#8217; modelling engines. Therefore, integrated geospatial quantitative data and procedures may be directly and freely used by planners. The system is continuously evolving and is thought to function on the fly from local (administrative limits) to the European scale, addressing among others the issues of rural fragmentation, loss of soil ecosystem services, estimates of soil sealing evolution over time, etc. The tool is being developed with the help of end users and indirectly explores a change of paradigm where soil science and landscape/urban planning work together to provide operational instruments that may be adopted by local communities in addressing soil sealing issues with a proactive approach.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.