This paper addresses the problem of controlling a robot arm executing a cooperative task with a human who guides the robot through direct physical interaction. This problem is tackled by allowing the end effector to comply according to an impedance control law defined in the Cartesian space. While, in principle, the robot's dynamics can be fully compensated and any impedance behaviour can be imposed by the control, the stability of the coupled human-robot system is not guaranteed for any value of the impedance parameters. Moreover, if the robot is kinematically or functionally redundant, the redundant degrees of freedom play an important role. The idea proposed here is to use redundancy to ensure a decoupled apparent inertia at the end effector. Through an extensive experimental study on a 7-DOF KUKA LWR4 arm, we show that inertial decoupling enables a more flexible choice of the impedance parameters and improves the performance during manual guidance
The problem of image based visual servoing for robots working in a dynamic environment is addressed in this paper. It is assumed that the environment is observed by depth sensors which allow to measure the distance between any moving obstacle and the robot. The main idea is to control suitable image moments during the interaction phase to relax a certain number of robot’s degrees of freedom. If an obstacle approaches the robot, the main visual servoing task is attenuated or completely abandoned while the image features are kept in the camera field of view by controlling the image moments. Fuzzy rules are used to set the reference values for the controller. Beside that, the relaxed redundancy of the robot is exploited to avoid collisions as well. After removing the risk of collision, the main visual servoing task is resumed. The effectiveness of the algorithm is shown by several case studies on a KUKA LWR 4 robot arm
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.