Pairwise testing can greatly minimize the cost of software testing and also increase the ability of fault detection. Nevertheless, generating the most optimal test suite is an NP-complete problem and still an open area for research. The test case generation is the most active area of the pairwise testing research. Metaheuristic algorithms have been broadly used for solving difficult optimization problems as well as proving their effectiveness to get most optimal solutions. Kidney algorithm (KA) is a recent metaheuristic algorithm. This study introduces a new pairwise strategy by adapting KA; which is the first time to adapt KA in generating the test suite. The proposed strategy is called Pairwise Kidney Strategy (PKS). This study also highlights the PKS design; in addition, compare its performance with other reported strategies in the literature in terms of test suite size. Experiment results show that PKS has very competitive results as compared with other strategies.
A combinatorial testing (CT) is an important technique usually employed in the generation of test cases. The generation of an optimal sized test case is a non-deterministic polynomial hard problem. In recent times, many researchers had developed various strategies based on the search-based approach to address the CT issues. This study presented the most recent variable interaction strength (VS) CT strategy using an enhanced variant in the greedy algorithm. Hence, they are referred to as variable strength modified greedy strategy (VS-MGS). Moreover, the modified strategy supports a VS together with interaction strength up to six. The proposed variant-greedy algorithm employed the elitism mechanism alongside the iteration in order to improve its efficiency. This algorithm is invariably called the modified greedy algorithm (MGA). Furthermore, the efficiency and performance of the VS-MGS using MGA were assessed first by comparing its results with the original greedy algorithm results and thereafter benchmarked with the results of the existing VS CT strategies. The VS-MGS's results ultimately revealed that the adaptation of elitism mechanism with iteration in greedy algorithm resulted in an improved efficiency in the process of generating a near-optimal test case set size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.