Increased exposure to pollution has been implicated in cardiovascular malfunction, and although studies show a relationship between PM10 and mortality, the exact biological causes are unclear. This study investigated how compromised lungs respond to instillation of nanoparticles, and the links between exposure to nanoparticles and the subsequent effects on the blood. Instillation of diesel exhaust particles and Cabosil caused significant permeability and inflammatory changes in both bleomycin-treated and control lungs, as shown by increased lung surface protein and lung:body weight ratio. This was true in edematous and maximally repairing lungs, but without significant hematological alterations. Plasma viscosity, a renowned marker for cardiovascular disease, correlated strongly statistically with free cell numbers, type I cell marker rT140, and lung acellular protein. These correlations are a new and novel insight into the mechanisms linking air pollution to cardiovascular mortality.
BACKGROUND: Exposure to particulate air pollution is associated with an increased risk of cardiovascular disease. The mechanism by which exposure increases risk is poorly understood but could involve changes in the flow properties of blood. OBJECTIVE: The aim of this investigation was to assess the effect, in rats, of intratracheal instillation of particulate air pollution on leukocyte flow properties by measurement of polymorphonucleocyte (PMN) and monocyte actin polymerisation. METHODS: Rats were exposed to particulate air pollution by intratracheal instillation of PM 10 . Blood was collected from test and control animals at 3 days (n = 10) and 6 weeks (n = 10) after dust instillation. Partial differential leukocyte counts were performed. The intracellular F-actin content of blood PMNs and monocytes was determined by staining with FITC-phalloidin and flow cytometric determination of mean florescence intensity (MFI). RESULTS: There were no significant changes in PMN MFI (p = 0.369, ANOVA) or cell counts (p = 0.753, ANOVA). There was a significant increase in monocyte MFI (p = 0.004, ANOVA) and a decrease in monocyte cell count (p = 0.003, ANOVA) in instilled rats. CONCLUSIONS: Intratracheal instillation of air pollution particles resulted in an increase in blood monocyte actin polymerisation, which may cause trapping of monocytes. This could be a mechanism by which exposure to air pollution increases the risk of cardiovascular disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.