Infectious diseases are the leading cause of death worldwide. Thus, nanotechnology provides an excellent opportunity to treat drug-resistant microbial infections. Numerous antibiotics have been used to inhibit the growth and kill of microbes, but the development of resistance and the emergence of side effects have severely limited the use of these agents. Due to the development of the nanotechnology, nanoparticles are widely used as antimicrobials. Silver and chitosan nanoparticles have antifungal, antiviral and antibacterial properties, and many studies confirm the antifungal properties of silver nanoparticles. Nowadays, the use of nanoparticles in the diagnosis and treatment of infectious diseases has developed due to less side effects and also the help of these particles in effective drug delivery to the target tissue. Liposomes are also used as carriers of drug delivery, genes, and modeling of cell membranes in both animals and humans. The ability of these liposomes to encapsulate large amounts of drugs, minimize unwanted side effects, high effectiveness and low toxicity has attracted the interest of researchers. This review article examines recent efforts by researchers to identify and treat infectious diseases using antimicrobial nanoparticles and drug nano-carriers.
Background: Neurological disorders (NLDs) are widely acknowledged as a significant public health concern worldwide. Stroke, Alzheimer's disease (AD), and traumatic brain injury (TBI) are three of these disorders that have sparked major study attention. Neurological dysfunction, protein buildup, oxidation and neuronal injury, and aberrant mitochondria are all prevalent neuropathological hallmarks of these disorders. The signaling cascade of nuclear factor erythroid 2 related factor 2 (Nrf2) shares all of them as a common target. Several studies have found that overexpression of Nrf2 is a promising treatment method in NLDs. Effective treatment of these disorders continues to be a universal concern regardless of various medicines. In order to treat a variety of neurological problems, organic remedies may provide an alternative treatment. It has been demonstrated that polyphenols like quercetin (Que) offer considerable capabilities for treating NLDs. One of Que's greatest key targets, Nrf2, has the capacity to control the production of a number of cytoprotective enzymes that exhibit neuroprotective, detoxifying, and antioxidative effects. Additionally, Que enhanced the expression of Nrf2 and inhibited alterations in the shape and death of neurons in the hippocampus. Objective: In this review, we have focused on Que's medicinal prospects as a neuroprotective drug. Methods: PubMed, Scopus, Science Direct, and Google Scholar were used to search articles for this study. Results: The findings of this research demonstrate that (1) Que protected the blood‐brain barrier via stimulating Nrf2 in animal stroke, which alleviated ischemic reperfusion and motor dysfunction. (2) By triggering the Nrf2 pathway, Que reduced the neuroinflammation and oxidative damage brought on by TBI in the cortex. (3) In an experimental model of AD, Que enhanced cognitive function by decreasing A1‐4, antioxidant activity, and Nrf2 levels in the brain. Conclusion: We discuss recent research on Que‐mediated Nrf2 expression in the management of several NLDs in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.