Inflammatory diseases such as rheumatoid arthritis and psoriasis are characterized by increases in circulating cytokines, which play an important role in modulation of the disease state. Several marketed bio-therapeutics target cytokines and act as effective treatment strategies. Previous in-vitro and in-vivo studies have suggested that cytokines may have both direct and indirect effects on drug metabolizing enzyme levels in the liver. Few studies have characterized models to evaluate the risk of potential drug interactions that might be mediated by changes in cytokine levels. In the present studies the potential of three cytokines (IL-2, IL-6 and TNF-α) to modulate gene expression and activity of the major human cytochrome P450 (CYP) enzymes (CYP1A2, 2B6, 2C9, 2C19, 2D6, and 3A4) in cryopreserved human hepatocytes (CHH) was investigated. Significant decreases in the activity of all 6 CYP isoforms occurred in hepatocytes incubated with TNF-α or IL-6 (17-85%; and 22-76% of untreated control values, respectively). TNF-α down-regulated the gene expression of CYP1A2, 2D6 and 3A4 only, whereas IL-6 down-regulated gene expression of all of the tested CYP isoforms except 2D6. IL-2 had only mild effects on CYP activity and mRNA levels of examined isoforms. In CHH exposed to TNF-α, changes in CYP activity were not always paralleled by gene expression alterations for three of the examined CYP isoforms. These studies highlight several potential pitfalls in using isolated human hepatocytes for determination of drug interactions by bio-therapeutics including lack of correlation of mRNA and activity measurements for some CYP isoforms when using single time point determinations, and appropriateness of the model for indirect acting cytokine and cytokine modulators.
The detection of drug-induced hepatotoxicity remains an important safety issue in drug development. A liver-specific microRNA species, microRNA-122 (miR-122), has recently shown potential for predicting liver injury in addition to the standard hepatic injury biomarkers. The objective of this study was to measure miR-122 together with several other liver markers in distinct settings of acute liver toxicity in rats to determine the value of miR-122 as a biomarker for liver injury in this species. Rats were exposed to 3 well-established liver toxicants (acetaminophen, allyl alcohol, and a-naphthyl isothiocyanate), a liver-enzyme inducer (phenobarbital), or a cardiotoxicant (doxorubicin). There was a clear increase in plasma miR-122 following administration of acetaminophen, allyl alcohol, and a-naphthyl isothiocyanate. The response of miR-122 paralleled that of other markers and was consistent with liver injury as indicated by histopathological evaluation. Furthermore, the changes in miR-122 were detected earlier than standard liver injury markers and exhibited a wide dynamic range. In contrast, miR-122 responses to phenobarbital and doxorubicin were low. Based on these findings, miR-122 shows significant promise and may provide added value for assessing liver toxicity in drug development.
Sphingolipids serve as structural elements of cells and as lipid second messengers. They regulate cellular homeostasis, mitogenesis, and apoptosis. Sphingolipid signaling may also be important in various pathophysiologies such as vascular injury, inflammation, and cancer. Serine palmitoyltransferase (SPT) catalyzes the condensation of serine with palmitoyl-CoA, the first, rate-limiting step in de novo sphingolipid biosynthesis. This integral microsomal membrane protein consists of at least two subunits, SPT1 and SPT2. In this study we analyzed the expression of SPT1 and SPT2 in normal human tissues. Strong SPT1 and SPT2 expression was observed in pyramidal neurons in the brain, in colon epithelium, and in mucosal macrophages. However, SPT2 expression was more prominent than SPT1 in the colon mucosal macrophages, the adrenomedullary chromaffin cells and endothelium, and in the uterine endothelium. SPT2 was localized in both nuclei and cytoplasm of the adrenomedullary chromaffin cells, whereas SPT1 was primarily cytoplasmic. These observations link enhanced SPT expression to proliferating cells, such as the lung, stomach, intestinal epithelium, and renal proximal tubular epithelium, and to potentially activated cells such as neurons, chromaffin cells, and mucosal macrophages. A baseline expression of SPT, established by this study, may serve as a measure for aberrant expression in various disease states.
Psoriasis is a T-cell-mediated autoimmune disease involving the skin. Two cytokines, interleukin-12 (IL-12) and IL-23 have been shown to play a pivotal role in the pathogenesis of the disease. Ustekinumab (Stelara) is a therapeutic monoclonal antibody (mAb) targeted against the p40 shared subunit of . Recently the ability of therapeutic proteins (TP) including mAbs that target either cytokines directly (e.g., Pegasys; peginterferon a-2a) or their respective cell surface receptors [e.g., tocilizumab (Actemra); anti IL-6R] to desuppress cytochrome P450 (P450) enzymes in vitro and in the clinic, has been demonstrated. In the present study the ability of IL-12 and IL-23 to suppress multiple P450 enzymes was investigated in vitro using six separate lots of cultured human hepatocytes. Following exposure of 10 ng/ml IL-12 and IL-23 for 48 hours, either alone or in combination, no change in CYP2B6, 2C9, 2C19, or 3A4 gene expression or functional activity was observed. None of the untreated hepatocyte donors showed appreciable expression of the IL-12 or IL-23 receptors. Similar results were seen with whole human liver samples. Exposure of hepatocytes to IL-12 and/or IL-23, known P450 suppressors (IL-6 and tumor necrosis factor-a) or known P450 inducers (b-naphthoflavone, phenobarbital, and rifampicin) did not appreciably alter the expression of the IL-12 and IL-23 receptors either. Finally, in contrast to the positive control IL-6, expression of the acute phase C-reactive protein was unaltered following IL-12 and/or IL-23 treatment. Together, these data suggest a negligible propensity for IL-12 or IL-23 to directly alter P450 enzymes in human hepatocytes. IntroductionThe ability of therapeutic proteins (TP) that target cytokines to potentially mediate drug interactions through alterations in drug metabolizing enzymes is a growing concern in drug development (Huang et al., 2010). Patients with inflammatory disease often have increased circulating or local cytokine levels including interleukin-6 (IL-6), tumor necrosis factor-a (TNF-a), and interferon-gamma, which have all been shown to alter cytochrome P450 (P450) metabolic enzyme levels in the liver (Morgan, 2009). The TP treatment that neutralizes one or more of these cytokines could result in patients experiencing rebound metabolic enzyme levels, leading to decreased comedication exposure and potentially therapeutic failure. As an example, recent clinical studies by Schmitt et al., (2011) showed significantly decreased simvastatin (Zocor) exposure in rheumatoid arthritis patients receiving tocilizumab, an anti-human IL-6 receptor mAb. The decreased exposure was linked to changes in CYP3A4 expression reported by the same group following anti-IL-6R treatment in the presence and absence of tocilizumab in cultured human hepatocytes (Zhang et al., 2009).Psoriasis is a chronic inflammatory skin disease affecting approximately 2% of the population (Christophers, 2001;Nestle et al., 2009). Pathogenesis of psoriasis involves a complex interplay of various cytokines, incl...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.