Isothermal molecular diagnostics are bridging the technology gap between traditional diagnostics and polymerase chain reaction-based methods. These new techniques enable timely and accurate testing, especially in settings where there is a lack of infrastructure to support polymerase chain reaction facilities. Despite this, there is a significant lack of uptake of these technologies in developing countries where they are highly needed. Among these novel isothermal technologies, recombinase polymerase amplification (RPA) holds particular potential for use in developing countries. This rapid nucleic acid amplification approach is fast, highly sensitive and specific, and amenable to countries with a high burden of infectious diseases. Implementation of RPA technology in developing countries is critically required to assess limitations and potentials of the diagnosis of infectious disease, and may help identify impediments that prevent adoption of new molecular technologies in low resource- and low skill settings. This review focuses on approaching diagnosis of infectious disease with RPA.
The current coronavirus disease 2019 (COVID-19) pandemic is largely driven by community transmission, after 2019 novel Coronavirus (2019-nCoV or SARS-CoV-2) crosses the borders. To stop the spread, rapid testing is required at community clinics and hospitals. These rapid tests should be comparable with the standard PCR technology. Isothermal amplification technology provides an excellent alternative that is highly amenable to resource limited settings, where expertise and infrastructure to support PCR are not available. In this review, we provide a brief description of isothermal amplification technology, its potential and the gaps that need to be considered for SARS-CoV-2 detection. Among this emerging technology, loop-mediated amplification (LAMP), recombinase polymerase amplification (RPA) and Nicking enzyme-assisted reaction (NEAR) technologies have been identified as potential platforms that could be implemented at community level, without samples referral to a centralized laboratory and prolonged turnaround time associated with the standard COVID-19 RT-PCR test. LAMP, for example, has recently been shown to be comparable with PCR and could be performed in less than 30 min by non-laboratory staff, without RNA extractions commonly associated with PCR. Interestingly, NEAR (ID NOW™ COVID-19 (Abbott, IL, USA) was able to detect the virus in 5 min. More so, isothermal platforms are cost effective and could easily be scaled up to resource limited settings. Diagnostics developers, scientific community and commercial companies could consider this alternative method to help stop the spread of COVID-19.
BackgroundThe 2014/2015 Ebolavirus outbreak resulted in more than 28,000 cases and 11,323 reported deaths, as of March 2016. Domestic transmission of the Guinea strain associated with the outbreak occurred mainly in six African countries, and international transmission was reported in four countries. Outbreak management was limited by the inability to rapidly diagnose infected cases. A further fifteen countries in Africa are predicted to be at risk of Ebolavirus outbreaks in the future as a consequence of climate change and urbanization. Early detection of cases and reduction of transmission rates is critical to prevent and manage future severe outbreaks. We designed a rapid assay for detection of Ebolavirus using recombinase polymerase amplification, a rapid isothermal amplification technology that can be combined with portable lateral flow detection technology. The developed rapid assay operates in 30 min and was comparable with real-time TaqMan™ PCR.MethodsDesigned, screened, selected and optimized oligonucleotides using the NP coding region from Ebola Zaire virus (Guinea strain). We determined the analytical sensitivity of our Ebola rapid molecular test by testing selected primers and probe with tenfold serial dilutions (1.34 × 1010− 1.34 × 101 copies/μL) of cloned NP gene from Mayinga strain of Zaire ebolavirus in pCAGGS vector, and serially diluted cultured Ebolavirus as established by real-time TaqMan™ PCR that was performed using ABI7500 in Fast Mode. We tested extracted and reverse transcribed RNA from cultured Zaire ebolavirus strains – Mayinga, Gueckedou C05, Gueckedou C07, Makona, Kissidougou and Kiwit. We determined the analytical specificity of our assay with related viruses: Marburg, Ebola Reston and Ebola Sudan. We further tested for Dengue virus 1–4, Plasmodium falciparum and West Nile Virus (Kunjin strain).ResultsThe assay had a detection limit of 134 copies per μL of plasmid containing the NP gene of Ebolavirus Mayinga, and cultured Ebolavirus and was highly specific for the Zaire ebolavirus species, including the Guinea strain responsible for the 2014/2015 outbreak. The assay did not detect related viruses like Marburg, Reston, or Sudan viruses, and other pathogens likely to be isolated from clinical samples.ConclusionsOur assay could be suitable for implementation in district and primary health laboratories, as only a heating block and centrifuge is required for operation. The technique could provide a pathway for rapid screening of patients and animals for improved management of outbreaks.
BackgroundAchieving accreditation in laboratories is a challenge in Nigeria like in most African countries. Nigeria adopted the World Health Organization Regional Office for Africa Stepwise Laboratory (Quality) Improvement Process Towards Accreditation (WHO/AFRO– SLIPTA) in 2010. We report on FHI360 effort and progress in piloting WHO-AFRO recognition and accreditation preparedness in six health facility laboratories in five different states of Nigeria.MethodLaboratory assessments were conducted at baseline, follow up and exit using the WHO/AFRO– SLIPTA checklist. From the total percentage score obtained, the quality status of laboratories were classified using a zero to five star rating, based on the WHO/AFRO quality improvement stepwise approach. Major interventions include advocacy, capacity building, mentorship and quality improvement projects.ResultsAt baseline audit, two of the laboratories attained 1- star while the remaining four were at 0- star. At follow up audit one lab was at 1- star, two at 3-star and three at 4-star. At exit audit, four labs were at 4- star, one at 3-star and one at 2-star rating. One laboratory dropped a ‘star’ at exit audit, while others consistently improved. The two weakest elements at baseline; internal audit (4%) and occurrence/incidence management (15%) improved significantly, with an exit score of 76% and 81% respectively. The elements facility and safety was the major strength across board throughout the audit exercise.ConclusionThis effort resulted in measurable and positive impact on the laboratories. We recommend further improvement towards a formal international accreditation status and scale up of WHO/AFRO– SLIPTA implementation in Nigeria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.