Application of biochar has many benefits in agriculture, to understand benefits of biochar in crop production and remediation of heavy metal pollution, Asian lotus (Nelumbo nucifera) as an aquatic crop and Chinese sage (Salvia miltiorrhiza) as a traditional medicinal herb were used to evaluate biochar's effects on plant growth and cadmium (Cd) accumulation in plants in the artificially Cd-polluted condition in containers. In both cases, adding biochar (4% to 32% in soil mix) significantly increased plant biomass. However, its impact on plant physiological traits were unclear. In Asian lotus, the Cd content in rhizomes, petioles, and leaves significantly increased by 69%, 81% and 55%, respectively as 32% biochar added. Meanwhile, a maximum reduction (71%) showed on bioaccumulation coefficient of Cd, and an up to 1.3 folds increase occurred on Cd transfer coefficient of underground to aboveground tissues, which indicated that biochar effectively prevented Cd uptake in major edible parts. In Chinese sage, adding 32% biochar significantly decreased Cd content in leaves and roots by 52.81% and 43.63%, respectively. Therefore, as a valuable soil amendment of improving plant growth and reducing heavy metal uptake, biochar has a huge potential in green agriculture production and remediation of heavy-metal polluted environment.
Lumen formation and inflation are crucial steps for tubular organ morphogenesis, yet the underling mechanism remains largely unrevealed. Here, we applied 4D proteomics to screen the lumenogenesis‐related proteins and revealed the biological pathways potentially that are involved in lumen inflation during notochord lumen formation in the ascidian Ciona savignyi. In total, 910 differentiated expressed proteins (DEPs) were identified before and after notochord lumen formation utilizing Mfuzz analysis. Those DEPs were grouped into four upregulated clusters based on their quantitative expression patterns; the functions of these proteins were enriched in protein metabolic and biosynthetic process, the establishment of localization, and vesicle‐mediated transport. We analyzed the vesicle trafficking cluster and focused on several vesicle transport hub proteins. In vivo function‐deficient experiments showed that mutation of vesicle transport proteins resulted in an abnormal lumen in notochord development, demonstrating the crucial role of intracellular trafficking for lumen formation. Moreover, abundant extracellular matrix proteins were identified, the majority of which were predicted to be glycosylated proteins. Inhibition of glycosylation markedly reduced the lumen expansion rate in notochord cells, suggesting that protein glycosylation is essential for lumenogenesis. Overall, our study provides an invaluable resource and reveals the crucial mechanisms in lumen formation and expansion.
Lumen development is a crucial phase in tubulogenesis, although its molecular mechanisms are largely unknown. In this study, we discovered an ELMO domain-containing 3 (ELMOD3), which belongs to ADP-ribosylation factor GTPase-activating protein family, was necessary to form the notochord lumen in
Ciona
larvae
.
We demonstrated that ELMOD3 interacted with lipid raft protein Flotillin2 and regulated its subcellular localization. The loss-of-function of Flotillin2 prevented notochord lumen formation. Furthermore, we found that ELMOD3 also interacted with Rab1A, which is the regulatory GTPase for vesicle trafficking and located at the notochord cell surface. Rab1A mutations arrested the lumen formation, phenocopying the loss-of-function of ELMOD3 and Flotillin2. Our findings further suggested that Rab1A interactions influenced Flotillin2 localization. We thus identified a unique pathway in which ELMOD3 interacted with Rab1A, which controlled the Flotillin2-mediated vesicle trafficking from cytoplasm to apical membrane, required for
Ciona
notochord lumen formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.