Metaheuristic optimization algorithms present an effective method for solving several optimization problems from various types of applications and fields. Several metaheuristics and evolutionary optimization algorithms have been emerged recently in the literature and gained widespread attention, such as particle swarm optimization (PSO), whale optimization algorithm (WOA), grey wolf optimization algorithm (GWO), genetic algorithm (GA), and gravitational search algorithm (GSA). According to the literature, no one metaheuristic optimization algorithm can handle all present optimization problems. Hence novel optimization methodologies are still needed. The Al-Biruni earth radius (BER) search optimization algorithm is proposed in this paper. The proposed algorithm was motivated by the behavior of swarm members in achieving their global goals. The search space around local solutions to be explored is determined by Al-Biruni earth radius calculation method. A comparative analysis with existing state-of-the-art optimization algorithms corroborated the findings of BER's validation and testing against seven mathematical optimization problems. The results show that BER can both explore and avoid local optima. BER has also been tested on an engineering design optimization problem. The results reveal that, in terms of performance and capability, BER outperforms the performance of state-of-the-art metaheuristic optimization algorithms.
One of the most promising research areas in the healthcare industry and the scientific community is focusing on the AI-based applications for real medical challenges such as the building of computer-aided diagnosis (CAD) systems for breast cancer. Transfer learning is one of the recent emerging AI-based techniques that allow rapid learning progress and improve medical imaging diagnosis performance. Although deep learning classification for breast cancer has been widely covered, certain obstacles still remain to investigate the independency among the extracted high-level deep features. This work tackles two challenges that still exist when designing effective CAD systems for breast lesion classification from mammograms. The first challenge is to enrich the input information of the deep learning models by generating pseudo-colored images instead of only using the input original grayscale images. To achieve this goal two different image preprocessing techniques are parallel used: contrast-limited adaptive histogram equalization (CLAHE) and Pixel-wise intensity adjustment. The original image is preserved in the first channel, while the other two channels receive the processed images, respectively. The generated three-channel pseudo-colored images are fed directly into the input layer of the backbone CNNs to generate more powerful high-level deep features. The second challenge is to overcome the multicollinearity problem that occurs among the high correlated deep features generated from deep learning models. A new hybrid processing technique based on Logistic Regression (LR) as well as Principal Components Analysis (PCA) is presented and called LR-PCA. Such a process helps to select the significant principal components (PCs) to further use them for the classification purpose. The proposed CAD system has been examined using two different public benchmark datasets which are INbreast and mini-MAIS. The proposed CAD system could achieve the highest performance accuracies of 98.60% and 98.80% using INbreast and mini-MAIS datasets, respectively. Such a CAD system seems to be useful and reliable for breast cancer diagnosis.
Self-driving car plays a crucial role in implementing traffic intelligence. Road smoothness in front of self-driving cars has a significant impact on the car's driving safety and comfort. Having potholes on the road may lead to several problems, including car damage and the occurrence of collisions. Therefore, self-driving cars should be able to change their driving behavior based on the real-time detection of road potholes. Various methods are followed to address this problem, including reporting to authorities, employing vibration-based sensors, and 3D laser imaging. However, limitations, such as expensive setup costs and the danger of discovery, affected these methods. Therefore, it is necessary to automate the process of potholes identification with sufficient precision and speed. A novel method based on adaptive mutation and dipper throated optimization (AMDTO) for feature selection and optimization of the random forest (RF) classifier is presented in this paper. In addition, we propose a new adaptive method for dataset balancing, referred to as optimized hashing SMOTE, to boost the performance of the optimized model. Data on potholes in different weather conditions and circumstances were collected and augmented before training the proposed model. The effectiveness of the proposed method is shown in experiments in classifying road potholes accurately. Eleven feature selection methods, including WOA, GWO, and PSO, and three machine learning classifiers were included in the conducted experiments to measure the superiority of the proposed method. The proposed method, AMDTO+RF, achieved a pothole classification accuracy of (99.795%), which outperforms the accuracy achieved by the other approaches, WOA+RF of 97.5%, GWO+RF of 98.6%, PSO+RF of 98.1%, and transfer learning approaches, AlexNet of 86.8%, VGG-19 of 87.3%, GoogLeNet of 90.4%, and ResNet-50 of 93.8%. In addition, an in-depth statistical analysis is performed on the recorded results to study the significance and stability of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.