In this paper, the projective synchronization problem of two fractional-order different chaotic (or hyperchaotic) systems with both uncertain dynamics and external disturbances is considered. More particularly, a fuzzy adaptive control system is investigated for achieving an appropriate projective synchronization of unknown fractional-order chaotic systems. The adaptive fuzzy logic systems are used to approximate some uncertain nonlinear functions appearing in the system model. These latter are augmented by a robust control term to compensate for the unavoidable fuzzy approximation errors and external disturbances as well as residual error due to the use of the socalled e-modification in the adaptive laws. A Lyapunov approach is adopted for the design of the parameter adaptation laws and the proof of the corresponding stability as well as the asymptotic convergence of the underlying synchronization errors towards zero. The effectiveness of the proposed synchronization system is illustrated through numerical experiment results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.