Early identification of patients at risk of developing complications during their hospital stay is currently one of the most challenging issues in healthcare. Complications include hospital-acquired infections, admissions to intensive care units, and in-hospital mortality. Being able to accurately predict the patients' outcomes is a crucial prerequisite for tailoring the care that certain patients receive, if it is believed that they will do poorly without additional intervention. We consider the problem of complication risk prediction, such as inpatient mortality, from the electronic health records of the patients. We study the question of making predictions on the first day at the hospital, and of making updated mortality predictions day after day during the patient's stay. We develop distributed models that are scalable and interpretable. Key insights include analysing diagnoses known at admission and drugs served, which evolve during the hospital stay. We leverage a distributed architecture to learn interpretable models from training datasets of gigantic size. We test our analyses with more than one million of patients from hundreds of hospitals, and report on the lessons learned from these experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.