Symbiotic N2 fixation (SNF) brings nitrogen into ecosystems, fuelling much of the world's agriculture(1) and sustaining carbon storage(2,3). However, it can also cause nitrogen saturation, exacerbating eutrophication and greenhouse warming(4-7). The balance of these effects depends on the degree to which N2-fixing plants adjust how much N2 they fix based on their needs (their SNF 'strategies')(5,6). Genetic, biochemical and physiological details of SNF are well known for certain economically important species(8,9), but the diversity of N2-fixing plants(10) and bacteria(11) is enormous, and little is known about most N2-fixing symbioses in natural ecosystems(12). Here, we show that co-occurring, closely related herbs exhibit diverse SNF strategies. In response to a nitrogen supply gradient, four species fixed less N2 than they needed (over-regulation), two fixed what they needed (facultative) and two did not downregulate SNF (obligate). No species downregulated but fixed more N2 than it needed (under-regulation or incomplete downregulation), but some species under-regulated or incompletely downregulated structural allocation to SNF. In fact, most species maintained nodules (the root structures that house symbionts) when they did not fix N2, suggesting decoupling of SNF activity and structure. Simulations showed that over-regulation of SNF activity is more adaptive than under-regulation or incomplete downregulation, and that different strategies have wildly different effects on ecosystem-level nitrogen cycling.
Observational studies and experimental evidence agree that rising global temperatures have altered plant phenology-the timing of life events, such as flowering, germination, and leaf-out. Other large-scale global environmental changes, such as nitrogen deposition and altered precipitation regimes, have also been linked to changes in flowering times. Despite our increased understanding of how abiotic factors influence plant phenology, we know very little about how biotic interactions can affect flowering times, a significant knowledge gap given ongoing human-caused alteration of biodiversity and plant community structure at the global scale. We experimentally manipulated plant diversity in a California serpentine grassland and found that many plant species flowered earlier in response to reductions in diversity, with peak flowering date advancing an average of 0.6 days per species lost. These changes in phenology were mediated by the effects of plant diversity on soil surface temperature, available soil N, and soil moisture. Peak flowering dates were also more dispersed among species in high-diversity plots than expected based on monocultures. Our findings illustrate that shifts in plant species composition and diversity can alter the timing and distribution of flowering events, and that these changes to phenology are similar in magnitude to effects induced by climate change. Declining diversity could thus contribute to or exacerbate phenological changes attributed to rising global temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.