Vermicompost has been promoted as a viable substrate component owing to its physicochemical properties, nutrient richness, and status as an excellent soil improver. It is considered the best organic fertilizer and is more eco-friendly than chemical fertilizers. Plant-growth-promoting microorganisms (PGPMs) are defined as plant biofertilizers that improve nutritional efficiency—that is, they transform nutrients within substrates from organic to inorganic forms, making them available for plants. The main objective of this research study is to evaluate the effects of the application of three PGPM microbial consortia on different mixtures of organic substrates based on vermicompost (V) and coconut fiber (CF) on two different horticultural crops. We performed a yield analysis and drainage nutrient tests and determined the plant nutritional status and enzymatic activity in organic substrates based on the two crops, Cucumis melo L. and Solanum lycopersicum L. A multivariate analysis of variance and principal component analysis was conducted using substrate types and PGPMs as factors. Differences (p < 0.05) in yield, dehydrogenase activity, the nutrient concentrations in a petiole sap, and drainage were observed at 30, 60, 75, and 90 days after transplant. PGPMs such as Trichoderma sp. and plant-growth-promoting rhizobacteria (PGPR) in organic substrates (40V + 60CF) can significantly improve the nutritional status of plants for use in organic soilless container agriculture. Biofertilization with PGPMs and suitable mixtures of organic substrates together with aqueous extracts (tea) of vermicompost, as nutrient solutions applied by fertigation, has allowed us to achieve an adequate level of production through environmentally friendly techniques. The results obtained allowed us to affirm that it was possible to replace conventional fertilization using chemical products and ensure adequate crop nutrition by supplying the main macronutrients.
The invasion of the macroalgae Rugulopteryx okamurae is causing several environmental and economic problems along Spanish Mediterranean coasts. The use of composts based on R. okamurae as a peat alternative in nursery production could be a valid alternative for the exploitation of this organic material. The present study evaluated three different composts as peat substitutes in potting media to grow tomato seedlings: compost of R. okamurae, compost of green horticultural residues (two-thirds) and R. okamurae (one-third), compost of garden pruning residues (two-thirds) and R. okamurae (one-third). Each compost was used to formulate two different substrates to reduce the use of peat (40% compost, 40% peat, 20% perlite) or entirely substitute it (80% compost, 20% perlite), using a control treatment with 80% peat and 20% perlite. Only the control treatment received mineral fertigation during the trial. The results showed that the high initial electrical conductivity and ion concentration were remarkably reduced thanks to the fast leaching of salt that occurred with customary irrigation. Generally, compost-based treatments allowed us to obtain tomato seedlings with satisfactory morphological parameters. The substrates that contained 40% compost of R. okamurae or a compost of garden pruning residues and R. okamurae led to the best results in term of seedling parameters. It is therefore concluded that composts based on R. okamuare could be used as a seedling growing medium for the valorization of algae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.