Summary. Air pollution is a major risk factor for global health, with 3 million deaths annually being attributed to fine particulate matter ambient pollution (PM 2:5 ). The primary source of information for estimating population exposures to air pollution has been measurements from ground monitoring networks but, although coverage is increasing, regions remain in which monitoring is limited. The data integration model for air quality supplements ground monitoring data with information from other sources, such as satellite retrievals of aerosol optical depth and chemical transport models. Set within a Bayesian hierarchical modelling framework, the model allows spatially varying relationships between ground measurements and other factors that estimate air quality. The model is used to estimate exposures, together with associated measures of uncertainty, on a high resolution grid covering the entire world from which it is estimated that 92% of the world's population reside in areas exceeding the World Health Organization's air quality guidelines.
Air pollution is a leading global disease risk factor. Tracking progress (e.g., for Sustainable Development Goals) requires accurate, spatially resolved, routinely updated exposure estimates. A Bayesian hierarchical model was developed to estimate annual average fine particle (PM) concentrations at 0.1° × 0.1° spatial resolution globally for 2010-2016. The model incorporated spatially varying relationships between 6003 ground measurements from 117 countries, satellite-based estimates, and other predictors. Model coefficients indicated larger contributions from satellite-based estimates in countries with low monitor density. Within and out-of-sample cross-validation indicated improved predictions of ground measurements compared to previous (Global Burden of Disease 2013) estimates (increased within-sample R from 0.64 to 0.91, reduced out-of-sample, global population-weighted root mean squared error from 23 μg/m to 12 μg/m). In 2016, 95% of the world's population lived in areas where ambient PM levels exceeded the World Health Organization 10 μg/m (annual average) guideline; 58% resided in areas above the 35 μg/m Interim Target-1. Global population-weighted PM concentrations were 18% higher in 2016 (51.1 μg/m) than in 2010 (43.2 μg/m), reflecting in particular increases in populous South Asian countries and from Saharan dust transported to West Africa. Concentrations in China were high (2016 population-weighted mean: 56.4 μg/m) but stable during this period.
Objective To compare the effectiveness of sotrovimab (a neutralising monoclonal antibody) with molnupiravir (an antiviral) in preventing severe outcomes of covid-19 in adult patients infected with SARS-CoV-2 in the community and at high risk of severe outcomes from covid-19. Design Observational cohort study with the OpenSAFELY platform. Setting With the approval of NHS England, a real world cohort study was conducted with the OpenSAFELY-TPP platform (a secure, transparent, open source software platform for analysis of NHS electronic health records), and patient level electronic health record data were obtained from 24 million people registered with a general practice in England that uses TPP software. The primary care data were securely linked with data on SARS-CoV-2 infection and treatments, hospital admission, and death, over a period when both drug treatments were frequently prescribed in community settings. Participants Adult patients with covid-19 in the community at high risk of severe outcomes from covid-19, treated with sotrovimab or molnupiravir from 16 December 2021. Interventions Sotrovimab or molnupiravir given in the community by covid-19 medicine delivery units. Main outcome measures Admission to hospital with covid-19 (ie, with covid-19 as the primary diagnosis) or death from covid-19 (ie, with covid-19 as the underlying or contributing cause of death) within 28 days of the start of treatment. Results Between 16 December 2021 and 10 February 2022, 3331 and 2689 patients were treated with sotrovimab and molnupiravir, respectively, with no substantial differences in baseline characteristics. Mean age of all 6020 patients was 52 (standard deviation 16) years; 59% were women, 89% were white, and 88% had received three or more covid-19 vaccinations. Within 28 days of the start of treatment, 87 (1.4%) patients were admitted to hospital or died of infection from SARS-CoV-2 (32 treated with sotrovimab and 55 with molnupiravir). Cox proportional hazards models stratified by area showed that after adjusting for demographic information, high risk cohort categories, vaccination status, calendar time, body mass index, and other comorbidities, treatment with sotrovimab was associated with a substantially lower risk than treatment with molnupiravir (hazard ratio 0.54, 95% confidence interval 0.33 to 0.88, P=0.01). Consistent results were found from propensity score weighted Cox models (0.50, 0.31 to 0.81, P=0.005) and when restricted to people who were fully vaccinated (0.53, 0.31 to 0.90, P=0.02). No substantial effect modifications by other characteristics were detected (all P values for interaction >0.10). The findings were similar in an exploratory analysis of patients treated between 16 February and 1 May 2022 when omicron BA.2 was the predominant variant in England. Conclusions In routine care of adult patients in England with covid-19 in the community, at high risk of severe outcomes from covid-19, those who received sotrovimab were at lower risk of severe outcomes of covid-19 than those treated with molnupiravir.
BackgroundOn 8 December 2020 NHS England administered the first COVID-19 vaccination.AimTo describe trends and variation in vaccine coverage in different clinical and demographic groups in the first 100 days of the vaccine rollout.Design and settingWith the approval of NHS England, a cohort study was conducted of 57.9 million patient records in general practice in England, in situ and within the infrastructure of the electronic health record software vendors EMIS and TPP using OpenSAFELY.MethodVaccine coverage across various subgroups of Joint Committee on Vaccination and Immunisation (JCVI) priority cohorts is described.ResultsA total of 20 852 692 patients (36.0%) received a vaccine between 8 December 2020 and 17 March 2021. Of patients aged ≥80 years not in a care home (JCVI group 2) 94.7% received a vaccine, but with substantial variation by ethnicity (White 96.2%, Black 68.3%) and deprivation (least deprived 96.6%, most deprived 90.7%). Patients with pre-existing medical conditions were more likely to be vaccinated with two exceptions: severe mental illness (89.5%) and learning disability (91.4%). There were 275 205 vaccine recipients who were identified as care home residents (JCVI group 1; 91.2% coverage). By 17 March, 1 257 914 (6.0%) recipients had a second dose.ConclusionThe NHS rapidly delivered mass vaccination. In this study a data-monitoring framework was deployed using publicly auditable methods and a secure in situ processing model, using linked but pseudonymised patient-level NHS data for 57.9 million patients. Targeted activity may be needed to address lower vaccination coverage observed among certain key groups.
In a primary care-based incidence cohort of patients with PsA, there were substantial risks of developing uveitis and/or Crohn's disease, but not ulcerative colitis, when compared with the general population and psoriasis controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.