The study was carried out in an intensively cultivated agricultural area of central Spain where high arsenic (As) concentrations in groundwater were previously reported. The concentrations and distribution of As in soils and crops (wheat, potato, sugar beet and carrot) were determined to know the effect of irrigation with As-rich groundwater in the agricultural fields, and to estimate its impact on the food chain contamination. Irrigation water shows high As concentrations ranging between 38 and 136 microg/l. Total As contents in the studied agricultural soils are higher than 10 mg/kg exceeding the As content in two control areas and the results of this study reflect that irrigation with As-rich groundwater led to the elevated As levels in the agricultural soils. Total As concentration in soils of a sugar beet plot (36 mg/kg) is higher than that found in soils of the less intensively watered field (11 mg/kg), and more than 3.5 times higher than that in the soils of the control area irrigated with uncontaminated water (<10 mg/kg). Water soluble As in soils ranges between 0.03 and 0.9 mg/kg exceeding the limit of 0.04 mg/kg for agricultural use and shows a significant correlation with total As and organic matter (OM) content in soils. Arsenic contents in potato tuber samples are 35 times higher than that measured in potato tuber of uncontaminated control sites (0.03 mg/kg). Elevated As contents (3.9-5.4 mg/kg DW) were also found in root samples of sugar beet. The As contents in vegetable samples are higher than As content (0.1 mg/kg DW) in plants of uncontaminated control areas, and the limits for foodstuffs (0.5-1 mg/kg DW) set by legislation of many countries reflecting the risk of food chain contamination by As in this study area.
The purpose of this research was to study the influence of the vegetation on the soil C pool of forests of pines (Pinus sylvestris) and oaks (Quercus pyrenaica), located in Central-Western Spain. Horizons from selected soils located in these forests were sampled, and the soil organic C (SOC) was determined. In addition, in vitro incubation experiments were carried out, under controlled conditions, to monitor the stability of SOC against the microbial activity. Soil humus fractions were isolated following a classical procedure of chemical fractionation using alkaline solutions, before and after the incubation experiment. A deeper O horizon was found under the pine forest than under oak one; however, higher SOC content was found in the oak site than that under pine one. During the in vitro mineralization process, a lower CO 2 production by the soil sample from pine forest was observed, in relation to that emitted by the oak soil. In addition, a lower humification degree was estimated for the soil humus under pines than for that under oaks. In conclusion, replacement of oaks by pines produced a decrease in SOC accumulation and a lower quality of humus in the forest soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.