To retain recreational uses and shoreline protection, a large proportion of ocean beaches have been, and continue to be, nourished. Adding sand from subtidal and terrestrial sources to nourish beaches rarely re-creates the original sediment structure of the beach. Numerous studies have demonstrated that meiofaunal communities are altered by changes in sediment composition in low-energy substrates, therefore, we have explored whether beach nourishment has affected exposed, ocean beach meiofaunal communities. Since the early 2000s, we have conducted a series of sampling and experimental studies on meiofauna and sediments on nourished beaches in coastal North Carolina USA that had been sampled previously in the early 1970s, prior to any beach nourishment. Most of our studies consider meiofauna at the level of major taxa only. However, a few studies examine free-living flatworm (turbellarian) species in detail because of the existence of historical studies examining this group. Comparison of contemporary results to historical data and of heavily nourished versus lightly nourished beaches reveals extensive changes to beach sediment structure and meiofaunal community composition, indicating that the beaches are a more heterogeneous habitat than in the past. The effects of these substantial physical and biological changes to the production of beach ecosystem services are unlikely to be inconsequential.
Serine/threonine kinase 3 (STK3) is an essential member of the highly conserved Hippo Tumor suppressor pathway which regulates Yes 1 Associated protein (YAP1) and TAZ. STK3 and its paralog STK4 initiate a phosphorylation cascade that regulate YAP1/TAZ activation and degradation, which is important for regulated cell growth and organ size. Deregulation of this pathway leads to hyper-activation of YAP1 in various cancers. Counter to the canonical tumor suppression role of STK3, we report that in the context of prostate cancer (PC), STK3 has a pro-tumorigenic role. Our investigation started with the observation that STK3, but not STK4, is frequently amplified in PC. A high STK3 expression is associated with decreased overall survival and positively correlates with androgen receptor (AR) activity in metastatic castrate resistant PC. XMU-MP-1, an STK3/4 inhibitor, slowed cell proliferation, spheroid growth and matrigel invasion in multiple models. Genetic depletion of STK3 decreased proliferation in several PC cell lines. In a syngeneic allograft model, STK3 loss slowed tumor growth kinetics in vivo and biochemical analysis suggest a mitotic growth arrest phenotype. To further probe the role of STK3 in PC, we identified and validated a new set of selective STK3 inhibitors, with enhanced kinase selectivity relative XMU-MP-1, that inhibited tumor spheroid growth and invasion. Consistent with the canonical role, inhibition of STK3 induced cardiomyocyte growth and had chemo-protective effects. Our results contend that STK3 has a non-canonical role in PC progression and inhibition of STK3 may have therapeutic potential for PC that merits further investigation.
Current advancements in prostate cancer (PC) therapies have been successful in slowing PC progression and increasing life expectancy; however, there is still no curative treatment for advanced metastatic castration resistant PC (mCRPC). Most treatment options target the androgen receptor, to which many PCs eventually develop resistance. Thus, there is a dire need to identify and validate new molecular targets for treating PC. We found NUAK family kinase 2 (NUAK2) expression is elevated in PC and mCRPC versus normal tissue, and expression correlates with an increased risk of metastasis. Given this observation and because NUAK2, as a kinase, is actionable, we evaluated the potential of NUAK2 as a molecular target for PC.NUAK2 is a stress response kinase that also plays a role in activation of the YAP cotranscriptional oncogene. Combining pharmacological and genetic methods for modulating NUAK2, we found that targeting NUAK2 in vitro leads to reduction in proliferation, three-dimensional tumor spheroid growth, and matrigel invasion of PC cells. Differential gene expression analysis of PC cells treated NUAK2 small molecule inhibitor HTH-02-006 demonstrated that NUAK2 inhibition results in downregulation of E2F, EMT, and MYC hallmark gene sets after NUAK2 inhibition. In a syngeneic allograft model and in radical prostatectomy patient derived explants, NUAK2 inhibition slowed tumor growth and proliferation rates. Mechanistically, HTH-02-006 treatment led to inactivation of YAP and the downregulation of NUAK2 and MYC protein levels. Our results suggest that NUAK2 represents a novel actionable molecular target for PC that warrants further exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.