Objective: Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease characterized by smooth muscle cell depletion, ECM (extracellular matrix) degradation, and infiltration of immune cells. The cellular and molecular profiles that govern the heterogeneity of the AAA aorta are yet to be elucidated. Approach and Results: We performed single-cell RNA sequencing on mouse AAA tissues. AAA was induced in C57BL/6J mice by perivascular application of CaCl 2 . Unbiased clustering identified 12 distinct populations of 8 cell types. Percentages of each population and gene expression were compared between sham and AAA tissue. Furthermore, we characterized the transcriptional profiles and potential functional features of populations in smooth muscle cells, fibroblasts, and macrophages and revealed the unique regulons in each cell type. Conclusions: Together, these data provide high-resolution insight into the complexity and heterogeneity of mouse AAA and indicate that populations within major cell types such as smooth muscle cells, fibroblasts, and macrophages may contribute differently to AAA pathogenesis.
Abdominal aortic aneurysm (AAA), defined as a focal dilation of the abdominal aorta beyond 50% of its normal diameter, is a common and potentially life-threatening vascular disease. The molecular and cellular mechanisms underlying AAA pathogenesis remain unclear. Healthy endothelial cells (ECs) play a critical role in maintaining vascular homeostasis by regulating vascular tone and maintaining an anti-inflammatory, anti-thrombotic local environment. Increasing evidence indicates that endothelial dysfunction is an early pathologic event in AAA formation, contributing to both oxidative stress and inflammation in the degenerating arterial wall. Recent studies utilizing single-cell RNA sequencing revealed heterogeneous EC sub-populations, as determined by their transcriptional profiles, in aortic aneurysm tissue. This review summarizes recent findings, including clinical evidence of endothelial dysfunction in AAA, the impact of biomechanical stress on EC in AAA, the role of endothelial nitric oxide synthase (eNOS) uncoupling in AAA, and EC heterogeneity in AAA. These studies help to improve our understanding of AAA pathogenesis and ultimately may lead to the generation of EC-targeted therapeutics to treat or prevent this deadly disease.
Receptor interacting protein kinase 3 (RIPK3)-mediated smooth muscle cell (SMC) necroptosis has been shown to contribute to the pathogenesis of abdominal aortic aneurysms (AAAs). However, the signaling steps downstream from RIPK3 during SMC necroptosis remain unknown. In this study, the roles of mixed lineage kinase domain-like pseudokinase (MLKL) and calcium/calmodulin-dependent protein kinase II (CaMKII) in SMC necroptosis were investigated. We found that both MLKL and CaMKII were phosphorylated in SMCs in a murine CaCl2-driven model of AAA and that Ripk3 deficiency reduced the phosphorylation of MLKL and CaMKII. In vitro, mouse aortic SMCs were treated with tumor necrosis factor α (TNFα) plus Z-VAD-FMK (zVAD) to induce necroptosis. Our data showed that both MLKL and CaMKII were phosphorylated after TNFα plus zVAD treatment in a time-dependent manner. SiRNA silencing of Mlkl-diminished cell death and administration of the CaMKII inhibitor myristoylated autocamtide-2-related inhibitory peptide (Myr-AIP) or siRNAs against Camk2d partially inhibited necroptosis. Moreover, knocking down Mlkl decreased CaMKII phosphorylation, but silencing Camk2d did not affect phosphorylation, oligomerization, or trafficking of MLKL. Together, our results indicate that both MLKL and CaMKII are involved in RIPK3-mediated SMC necroptosis, and that MLKL is likely upstream of CaMKII in this process.
Background: Accelerated smooth muscle cell (SMC) proliferation is the primary cause of intimal hyperplasia (IH) following vascular interventions. Forkhead Box M1 (FOXM1) is considered a proliferation-associated transcription factor. However, the presence and role of FOXM1 in IH following vascular injury have not been determined. Objective: We examined the expression of FOXM1 in balloon-injured rat carotid arteries and investigated the effect of FOXM1 inhibition in SMCs and on the development of IH. Methods and results: FOXM1 was detected by immunofluorescent staining in balloon-injured rat carotid arteries where we observed an upregulation at day 7, 14, and 28 compared to uninjured controls. Immunofluorescence staining revealed FOXM1 coincided with proliferating cell nuclear antigen (PCNA). FOXM1 was also detectable in human carotid plaque samples. Western blot showed an upregulation of FOXM1 protein in serum-stimulated SMCs. Inhibition of FOXM1 using siRNA or chemical inhibition led to the induction of apoptosis as measured by flow cytometry and western blot for cleaved caspase 3. Perturbations in survival signaling were measured by western blot following FOXM1 inhibition, which showed a decrease in phosphorylated AKT and β-catenin. The chemical inhibitor thiostrepton was delivered by intraperitoneal injection in rats that underwent balloon injury and led to reduced intimal thickening compared to DMSO controls. Conclusions: FOXM1 is an important molecular mediator of IH that contributes to the proliferation and survival of SMCs following vascular injury.
Deep vein thrombosis (DVT) is a common clinical problem, but its cellular and molecular mechanisms remain incompletely understood. In this study, we performed single-cell RNA sequencing on mouse inferior vena cava (IVC) 24 h after thrombus-inducing IVC ligation or sham operation. 9 cell types composed of multiple subpopulations were identified. Notable transcriptomic changes induced by DVT included a marked inflammatory response, elevated hypoxia, and globally reduced myogenesis. Analysis of individual cell populations revealed increased inflammation and reduced extracellular matrix production across smooth muscle cells and fibroblasts, juxtaposed against an early phenotypic shift in smooth muscle cell populations away from a contractile state. By characterizing the transcriptomic changes in the vein wall during acute venous thrombosis at the single-cell level, this work provides novel insights into early pathological events in the vein wall that may potentiate thrombus formation and result in long term adverse venous remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.