This is the unspecified version of the paper.This version of the publication may differ from the final published version. We present a new genre classification framework using both low-level signal-based features and high-level harmony features. A state of-the-art statistical genre classifier based on timbral features is extended using a first-order random forest containing for each genre rules derived from harmony or chord sequences. This random forest has been automatically induced, using the first-order logic induction algorithm TILDE, from a dataset, in which for each chord the degree and chord category are identified, and covering classical, jazz and pop genre classes. The audio descriptor-based genre classifier contains 206 features, covering spectral, temporal, energy, and pitch characteristics of the audio signal. The fusion of the harmony-based classifier with the extracted feature vectors is tested on three-genre subsets of the GTZAN and ISMIR04 datasets, which contain 300 and 448 recordings, respectively. Machine learning classifiers were tested using 5x5-fold cross-validation and feature selection. Results indicate that the proposed harmony-based rules combined with the timbral descriptor-based genre classification system lead to improved genre classification rates. Permanent repository link
This article presents an approach to automatically create virtual communities of users with similar music preferences in a distributed system. Our goal is to create personalized music channels for these communities using the content shared by its members in peer-to-peer networks for each community. To extract these communities a complex network theoretic approach is chosen. A fully connected graph of users is created using epidemic protocols. We show that the created graph sufficiently converges to a graph created with a centralized algorithm after a small number of protocol iterations. To find suitable techniques for creating user communities, we analyze graphs created from real-world recommender datasets and identify specific properties of these datasets. Based on these properties, different graph-based community-extraction techniques are chosen and evaluated. We select a technique that exploits identified properties to create clusters of music listeners. The suitability of this technique is validated using a music dataset and two large movie datasets. On a graph of 6,040 peers, the selected technique assigns at least 85% of the peers to optimal communities, and obtains a mean classification error of less than 0.05% over the remaining peers that are not assigned to the best community.
Abstract. Many computational models of music fail to capture essential aspects of the high-level musical structure and context, and this limits their usefulness, particularly for musically informed users. We describe two recent approaches to modelling musical harmony, using a probabilistic and a logic-based framework respectively, which attempt to reduce the gap between computational models and human understanding of music. The first is a chord transcription system which uses a high-level model of musical context in which chord, key, metrical position, bass note, chroma features and repetition structure are integrated in a Bayesian framework, achieving state-of-the-art performance. The second approach uses inductive logic programming to learn logical descriptions of harmonic sequences which characterise particular styles or genres. Each approach brings us one step closer to modelling music in the way it is conceptualised by musicians.
The world of music is changing rapidly. We are now just a few clicks away from being able to listen to nearly any song that has ever been recorded. This easy access to a nearly endless supply of music is changing how we explore, discover, share and experience music.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.