Aging and pathologic conditions cause intracellular aggregation of macromolecules and the dysfunction and degeneration of neurons, but the mechanisms are largely unknown. Prime examples are lysosomal storage disorders such as Niemann-Pick type C (NPC) disease, where defects in the endosomal-lysosomal protein NPC1 or NPC2 cause intracellular accumulation of unesterified cholesterol and other lipids leading to neurodegeneration and fatal neurovisceral symptoms. Here, we investigated the impact of NPC1 deficiency on rodent neurons using pharmacologic and genetic models of the disease. Improved ultrastructural detection of lipids and correlative light and electron microscopy identified lamellar inclusions as the subcellular site of cholesterol accumulation in neurons with impaired NPC1 activity. Immunogold labeling combined with transmission electron microscopy revealed the presence of CD63 on internal lamellae and of LAMP1 on the membrane surrounding the inclusions, indicating their origins from intraluminal vesicles of late endosomes and of a lysosomal compartment, respectively. Lamellar inclusions contained cell-intrinsic cholesterol and surface-labeled GM1, indicating the incorporation of plasma membrane components. Scanning electron microscopy revealed that the therapeutic drug candidate -cyclodextrin induces the subplasmalemmal location of lamellar inclusions and their subsequent release to the extracellular space. In parallel, -cyclodextrin mediated the NPC1-independent redistribution of cholesterol within neurons and thereby abolished a deleterious cycle of enhanced cholesterol synthesis and its intracellular accumulation, which was indicated by neuron-specific transcript analysis. Our study provides new mechanistic insight into the pathologic aggregation of macromolecules in neurons and suggests exocytosis as cellular target for its therapeutic reversal.
Cell-cell interactions in the central nervous system are based on the release of molecules mediating signal exchange and providing structural and trophic support through vesicular exocytosis and the formation of extracellular vesicles. The specific mechanisms employed by each cell type in the brain are incompletely understood. Here, we explored the means of communication used by Müller cells, a type of radial glial cells in the retina, which forms part of the central nervous system. Using immunohistochemical, electron microscopic, and molecular analyses, we provide evidence for the release of distinct extracellular vesicles from endfeet and microvilli of retinal Müller cells in adult mice in vivo. We identify VAMP5 as a Müller cell-specific SNARE component that is part of extracellular vesicles and responsive to ischemia, and we reveal differences between the secretomes of immunoaffinity-purified Müller cells and neurons in vitro. Our findings suggest extracellular vesicle-based communication as an important mediator of cellular interactions in the retina.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.