Clinical animal cytogenetics development began in the 1960’s, almost at the same time as human cytogenetics. However, the development of the two disciplines has been very different during the last four decades. Clinical animal cytogenetics reached its ‘Golden Age’ at the end of the 1980’s. The majority of the laboratories, as well as the main screening programs in farm animal species, presented in this review, were implemented during that period, under the guidance of some historical leaders, the first of whom was Ingemar Gustavsson. Over the past 40 years, hundreds of scientific publications reporting original chromosomal abnormalities generally associated with clinical disorders (mainly fertility impairment) have been published. Since the 1980’s, the number of scientists involved in clinical animal cytogenetics has drastically decreased for different reasons and the activities in that field are now concentrated in only a few laboratories (10 to 15, mainly in Europe), some of which have become highly specialized. Currently between 8,000 and 10,000 chromosomal analyses are carried out each year worldwide, mainly in cattle, pigs, and horses. About half of these analyses are performed in one French laboratory. Accurate estimates of the prevalence of chromosomal abnormalities in some populations are now available. For instance, one phenotypically normal pig in 200 controlled in France carries a structural chromosomal rearrangement. The frequency of the widespread 1;29 Robertsonian translocation in cattle has greatly decreased in most countries, but remains rather high in certain breeds (up to 20–25% in large beef cattle populations, even higher in some local breeds). The continuation, and in some instances the development of the chromosomal screening programs in farm animal populations allowed the implementation of new and original scientific projects, aimed at exploring some basic questions in the fields of chromosome and/or cell biology, thanks to easier access to interesting biological materials (germ cells, gametes, embryos ...).
BackgroundEmbryonic development proceeds through finely tuned reprogramming of the parental genomes to form a totipotent embryo. Cells within this embryo will then differentiate and give rise to all the tissues of a new individual. Early embryonic development thus offers a particularly interesting system in which to analyze functional nuclear organization. When the organization of higher-order chromatin structures, such as pericentromeric heterochromatin, was first analyzed in mouse embryos, specific nuclear rearrangements were observed that correlated with embryonic genome activation at the 2-cell stage. However, most existing analyses have been conducted by visual observation of fluorescent images, in two dimensions or on z-stack sections/projections, but only rarely in three dimensions (3D).ResultsIn the present study, we used DNA fluorescent in situ hybridization (FISH) to localize centromeric (minor satellites), pericentromeric (major satellites), and telomeric genomic sequences throughout the preimplantation period in naturally fertilized mouse embryos (from the 1-cell to blastocyst stage). Their distribution was then analyzed in 3D on confocal image stacks, focusing on the nucleolar precursor bodies and nucleoli known to evolve rapidly throughout the first developmental stages. We used computational imaging to quantify various nuclear parameters in the 3D-FISH images, to analyze the organization of compartments of interest, and to measure physical distances between these compartments.ConclusionsThe results highlight differences in nuclear organization between the two parental inherited genomes at the 1-cell stage, i.e. just after fertilization. We also found that the reprogramming of the embryonic genome, which starts at the 2-cell stage, undergoes other remarkable changes during preimplantation development, particularly at the 4-cell stage.
Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) represent naive and primed pluripotency states, respectively, and are maintained in vitro by specific signalling pathways. Furthermore, ESCs cultured in serum-free medium with two kinase inhibitors (2i-ESCs) are thought to be the ground naïve pluripotent state. Here, we present a comparative study of the epigenetic and transcriptional states of pericentromeric heterochromatin satellite sequences found in these pluripotent states. We show that 2i-ESCs are distinguished from other pluripotent cells by a prominent enrichment in H3K27me3 and low levels of DNA methylation at pericentromeric heterochromatin. In contrast, serum-containing ESCs exhibit higher levels of major satellite repeat transcription, which is lower in 2i-ESCs and even more repressed in primed EpiSCs. Removal of either DNA methylation or H3K9me3 at PCH in 2i-ESCs leads to enhanced deposition of H3K27me3 with few changes in satellite transcript levels. In contrast, their removal in EpiSCs does not lead to deposition of H3K27me3 but rather removes transcriptional repression. Altogether, our data show that the epigenetic state of PCH is modified during transition from naive to primed pluripotency states towards a more repressive state, which tightly represses the transcription of satellite repeats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.