Adaptation to oxygen deficiency is essential for virulence and persistence of Brucella inside the host. The flexibility of this bacterium with respect to oxygen depletion is remarkable, since Brucella suis can use an oxygen-dependent transcriptional regulator of the FnrN family, two high-oxygen-affinity terminal oxidases, and a complete denitrification pathway to resist various conditions of oxygen deficiency. Moreover, our previous results suggested that oxidative respiration and denitrification can be simultaneously used by B. suis under microaerobiosis. The requirement of a functional cytochrome bd ubiquinol oxidase for nitrite reductase expression evidenced the linkage of these two pathways, and the central role of the two-component system RegB/RegA in the coordinated control of both respiratory systems was demonstrated. We propose a scheme for global regulation of B. suis respiratory pathways by the transcriptional regulator RegA, which postulates a role for the cytochrome bd ubiquinol oxidase in redox signal transmission to the histidine sensor kinase RegB. More importantly, RegA was found to be essential for B. suis persistence in vivo within oxygen-limited target organs. It is conceivable that RegA acts as a controller of numerous systems involved in the establishment of the persistent state, characteristic of chronic infections by Brucella.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.