A fibroblast feeder layer is currently the best option for large scale expansion of autologous skin keratinocytes that are to be used for the treatment of severely burned patients. In a clinical context, using a human rather than a mouse feeder layer is desirable to reduce the risk of introducing animal antigens and unknown viruses. This study was designed to evaluate if irradiated human fibroblasts can be used in keratinocyte cultures without affecting their morphological and physiological properties. Keratinocytes were grown either with or without a feeder layer in serum-containing medium. Our results showed that keratinocytes grown either on an irradiated human feeder layer or irradiated 3T3 cells (i3T3) can be cultured for a comparable number of passages. The average epithelial cell size and morphology were also similar. On the other hand, keratinocytes grown without a feeder layer showed heavily bloated cells at early passages and stop proliferating after only a few passages. On the molecular aspect, the expression level of the transcription factor Sp1, a useful marker of keratinocytes lifespan, was maintained and stabilized for a high number of passages in keratinocytes grown with feeder layers whereas Sp1 expression dropped quickly without a feeder layer. Furthermore, gene profiling on microarrays identified potential target genes whose expression is differentially regulated in the absence or presence of an i3T3 feeder layer and which may contribute at preserving the growth characteristics of these cells. Irradiated human dermal fibroblasts therefore provide a good human feeder layer for an effective expansion of keratinocytes in vitro that are to be used for clinical purposes.
There is a clinical need for skin substitutes to replace full-thickness skin loss. Our group has developed a bilayered skin substitute produced from the patient's own fibroblasts and keratinocytes referred to as Self-Assembled Skin Substitute (SASS). After cell isolation and expansion, the current time required to produce SASS is 45 days. We aimed to optimize the manufacturing process to standardize the production of SASS and to reduce production time. The new approach consisted in seeding keratinocytes on a fibroblast-derived tissue sheet before its detachment from the culture plate. Four days following keratinocyte seeding, the resulting tissue was stacked on two fibroblast-derived tissue sheets and cultured at the air–liquid interface for 10 days. The resulting total production time was 31 days. An alternative method adapted to more contractile fibroblasts was also developed. It consisted in adding a peripheral frame before seeding fibroblasts in the culture plate. SASSs produced by both new methods shared similar histology, contractile behavior in vitro and in vivo evolution after grafting onto mice when compared with SASSs produced by the 45-day standard method. In conclusion, the new approach for the production of high-quality human skin substitutes should allow an earlier autologous grafting for the treatment of severely burned patients.
Our findings provide evidence that a large number of persons wait a long time for publicly funded physiotherapy services in Quebec. Based on our results, implementation of a prioritization process with an initial evaluation and intervention could help improve timely access to outpatient physiotherapy services. Implications for Rehabilitation Access to publicly funded outpatient physiotherapy services is limited by long waiting times in a great proportion of Quebec's hospitals. The use of a specific prioritization process that combines an evaluation and an intervention could possibly help improve timely access to services. Policy-makers, managers, and other stakeholders should work together to address the issue of limited access to publicly funded outpatient physiotherapy services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.