Background. Abnormal mineral metabolism in chronic kidney disease plays a critical role in vascular calcification and arterial stiffness. The impact of presently used dialysis calcium concentration (DCa) on arterial stiffness and aortic pressure waveform has never been studied. The aim of the present study is to evaluate, in haemodialysis (HD) patients, the impact of acute modification of DCa on arterial stiffness and central pulse wave profile (cPWP).Method. A randomized Latin square cross-over study was used to evaluate the three different concentrations of DCa (1.00, 1.25 and 1.50 mmol/L) during the second HD of the week for 3 consecutive weeks. Subjects returned to their baseline DCa for the following two treatments, allowing for a 7-day washout period between each experimental HD. cPWP, carotido-radial (c-r) and carotido-femoral (c-f) pulse wave velocities (PWV), plasma level of ionized calcium (iCa) and intact parathyroid hormone (PTH) were measured prior to and immediately after each experimental HD session. Data were analysed by the general linear model for repeated measures and by the general linear mixed model.Results. Eighteen patients with a mean age of 48.9 ± 18 years and a median duration of HD of 8.7 months (range 1–87 months) completed the study. In post-HD, iCa decreased with DCa of 1.00 mmol/L (−0.14 ± 0.04 mmol/L, P < 0.001), increased with a DCa of 1.50 mmol/L (0.10 ± 0.06 mmol/L, P < 0.001) but did not change with a DCa of 1.25 mmol/L. Tests of within-subject contrast showed a linear relationship between higher DCa and a higher post-HD Δc-f PWV, Δc-r PWV and Δmean BP (P < 0.001, P = 0.008 and P = 0.002, respectively). Heart rate-adjusted central augmentation index (AIx) decreased significantly after HD, but was not related to DCa. The timing of wave refection (Tr) occurred earlier after dialysis resulting in a linear relationship between higher DCa and post-HD earlier Tr (P < 0.044). In a multivariate linear-mixed model for repeated measures, the percentage increase in c-f PWV and c-r PWV was significantly associated with the increasing level of iCa, whereas the increasing level of ΔMBP was not significant. In contrast, the percentage decrease in Tr (earlier wave reflection) was determined by higher ΔMBP and higher ultrafiltration, whereas the relative change in AIx was inversely determined by the variation in the heart rate and directly by ΔMBP.Conclusion. We conclude that Dca and acute changes in the serum iCa concentration, even within physiological range, are associated with detectable changes of arterial stiffness and cPWP. Long-term studies are necessary to evaluate the long-term effects of DCa modulation on arterial stiffness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.