Since the discovery of the first stable N-heterocyclic carbene (NHC) in the beginning of the 1990s, these divalent carbon species have become a common and available class of compounds, which have found numerous applications in academic and industrial research. Their important role as two-electron donor ligands, especially in transition metal chemistry and catalysis, is difficult to overestimate. In the past decade, there has been tremendous research attention given to the chemistry of low-coordinate main group element compounds. Significant progress has been achieved in stabilization and isolation of such species as Lewis acid/base adducts with highly tunable NHC ligands. This has allowed investigation of numerous novel types of compounds with unique electronic structures and opened new opportunities in the rational design of novel organic catalysts and materials. This Review gives a general overview of this research, basic synthetic approaches, key features of NHC-main group element adducts, and might be useful for the broad research community.
Homodinuclear multiple-bonded neutral Al compounds, aluminum analogues of alkenes, have been a notoriously difficult synthetic target over the past several decades. Herein, we report the isolation of a stable neutral compound featuring an Al═Al double bond stabilized by N-heterocyclic carbenes. X-ray crystallographic and spectroscopic analyses demonstrate that the dialuminum entity possesses trans-planar geometry and an Al-Al bond length of 2.3943(16) Å, which is the shortest distance reported for a molecular dialuminum species. This new species reacts with ethylene and phenyl acetylene to give the [2+2] cycloaddition products. The structure and bonding were also investigated by detailed density functional theory calculations. These results clearly demonstrate the presence of an Al═Al double bond in this molecule.
A long-term dream comes true: An acyclic, neutrally charged silanone at last! Here, we report on the first examples of isolable acyclic, neutral, three-coordinate silanones 2 with indefinite stability as solids and lifetimes in solution of up to 2 days. The electronic properties of the Si═O bond were investigated via DFT calculations and revealed the π-donating N-heterocyclic imino (NHI) and σ-donating silyl groups as key factors for their enhanced stability. Besides initial reactivity studies of 2 toward CO and methanol, different isomerization pathways depending on the silyl substitution pattern were found. For 2a (R = TMS), a 1,3-silyl shift gave an intermediary disilene, which was trapped as unique NHC-disilene adduct 6. For the more stable silanone 2b (R = t-Bu), a selective transformation to the first reported room temperature stable, acyclic, two-coordinate N,O-silylene 7 exhibiting a fascinating siloxy ligand was observed. Both compounds were fully characterized experimentally and their bonding features were analyzed by theoretical calculations.
Reversibility is fundamental for transition metal catalysis, but equally for main group chemistry and especially low-valent silicon compounds, the interplay between oxidative addition and reductive elimination is key for a potential catalytic cycle. Herein, we report a highly reactive acyclic iminosilylsilylene 1, which readily performs an intramolecular insertion into a C═C bond of its aromatic ligand framework to give silacycloheptatriene (silepin) 2. UV-vis studies of this Si(IV) compound indicated a facile transformation back to Si(II) at elevated temperatures, further supported by density functional theory calculations and experimentally demonstrated by isolation of a silylene-borane adduct 3 following addition of B(CF). This tendency to undergo reductive elimination was exploited in the investigation of silepin 2 as a synthetic equivalent of silylene in the activation of small molecules. In fact, the first monomeric, four-coordinate silicon carbonate complex 4 was isolated and fully characterized in the reaction with carbon dioxide under mild conditions. Additionally, the exposure of 2 to ethylene or molecular hydrogen gave silirane 5 and Si(IV) dihydride 6, respectively.
Ligand controlled reactivity: a trans-bent and twisted geometry enables dihydrogen activation and enhanced catalytic activity for NHC-stabilised dialumenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.