Small molecule inhibitors of polyADP-ribose polymerase (PARP) are thought to mediate their antitumor effects as catalytic inhibitors that block repair of DNA single strand breaks. However, the mechanism of action of PARP inhibitors with regard to their effects in cancer cells is not fully understood. In this study we demonstrate that PARP inhibitors trap the PARP1 and PARP2 enzymes at damaged DNA. Trapped PARP-DNA complexes were more cytotoxic than unrepaired single-strand breaks caused by PARP inactivation, arguing that PARP inhibitors act in part as poisons that trap PARP enzyme on DNA. Moreover, the potency in trapping PARP differed markedly among inhibitors with MK-4827 > olaparib (AZD-2281) ≫ veliparib (ABT-888), a pattern not correlated with the catalytic inhibitory properties for each drug. We also analyzed repair pathways for PARP-DNA complexes using 30 genetically altered avian DT40 cell lines with pre-established deletions in specific DNA repair genes. This analysis revealed that, in addition to its function in homologous recombination, PARP also functions in post-replication repair and the Fanconi anemia pathway, and that polymerase β and FEN1 were critical for repairing trapped PARP-DNA complexes. In summary, our study provides a new mechanistic foundation for the rational application of PARP inhibitors in cancer therapy.
Anti-poly(ADP-ribose)polymerase (PARP) drugs were initially developed as catalytic inhibitors to block the repair of DNA single-strand breaks. We recently reported that several PARP inhibitors have an additional cytotoxic mechanism by trapping PARP-DNA complexes, and that both olaparib and niraparib act as PARP poisons at pharmacological concentrations. Therefore, we have proposed that PARP inhibitors should be evaluated based both on catalytic PARP inhibition and PARP-DNA trapping. Here, we evaluated the novel PARP inhibitor, BMN 673, and compared its effects on PARP1 and PARP2 with two other clinical PARP inhibitors, olaparib and rucaparib, using biochemical and cellular assays in genetically-modified chicken DT40 and human cancer cell lines. Although BMN 673, olaparib and rucaparib are comparable at inhibiting PARP catalytic activity, BMN 673 is ~100-fold more potent at trapping PARP-DNA complexes and more cytotoxic as single agent than olaparib, while olaparib and rucaparib show similar potencies in trapping PARP-DNA complexes. The high level of resistance of PARP1/2 knockout cells to BMN 673 demonstrates the selectivity of BMN 673 for PARP1/2. Moreover, we show that BMN 673 acts by stereospecific binding to PARP1 as its enantiomer, LT674, is several orders of magnitude less efficient. BMN 673 is also ~100-fold more cytotoxic than olaparib and rucaparib in combination with the DNA alkylating agents methyl methane sufonate (MMS) and temozolomide. Our study demonstrates that BMN 673 is the most potent clinical PARP inhibitor tested to date with the highest efficiency at trapping PARP-DNA complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.