Body composition analysis, also referred to as analytic morphomics, morphomics, or morphometry, describes the measurement of imaging biomarkers of body composition such as muscle and adipose tissue, most commonly on computed tomography (CT) images. A growing body of literature supports the use of such metrics derived from routinely acquired CT images for risk prediction in various patient populations, including those with lung cancer. Metrics include cross-sectional area and attenuation of skeletal muscle and subcutaneous, visceral, and intermuscular adipose tissue. The purpose of this review is to provide an overview of the concepts, definitions, assessment tools, segmentation techniques and associated pitfalls, interpretation of those measurements on chest and abdomen CT, and a discussion of reported outcomes associated with body composition metrics in patients with early-stage and advanced lung cancer.
Background Survival in patients with metastatic colorectal cancer (mCRC) has been associated with tumor mutational status, muscle loss, and weight loss. We sought to explore the combined effects of these variables on overall survival. Materials and Methods We performed an observational cohort study, prospectively enrolling patients receiving chemotherapy for mCRC. We retrospectively assessed changes in muscle (using computed tomography) and weight, each dichotomized as >5% or ≤5% loss, at 3, 6, and 12 months after diagnosis of mCRC. We used regression models to assess relationships between tumor mutational status, muscle loss, weight loss, and overall survival. Additionally, we evaluated associations between muscle loss, weight loss, and tumor mutational status. Results We included 226 patients (mean age 59 ± 13 years, 53% male). Tumor mutational status included 44% wild type, 42% RAS‐mutant, and 14% BRAF‐mutant. Patients with >5% muscle loss at 3 and 12 months experienced worse survival controlling for mutational status and weight (3 months hazard ratio, 2.66; p < .001; 12 months hazard ratio, 2.10; p = .031). We found an association of >5% muscle loss with BRAF‐mutational status at 6 and 12 months. Weight loss was not associated with survival nor mutational status. Conclusion Increased muscle loss at 3 and 12 months may identify patients with mCRC at risk for decreased overall survival, independent of tumor mutational status. Specifically, >5% muscle loss identifies patients within each category of tumor mutational status with decreased overall survival in our sample. Our findings suggest that quantifying muscle loss on serial computed tomography scans may refine survival estimates in patients with mCRC. Implications for Practice In this study of 226 patients with metastatic colorectal cancer, it was found that losing >5% skeletal muscle at 3 and 12 months after the diagnosis of metastatic disease was associated with worse overall survival, independent of tumor mutational status and weight loss. Interestingly, results did not show a significant association between weight loss and overall survival. These findings suggest that muscle quantification on serial computed tomography may refine survival estimates in patients with metastatic colorectal cancer beyond mutational status.
Background. Postprogression repeat biopsies are critical in caring for patients with lung cancer with epidermal growth factor receptor (EGFR) mutations. However, hesitation about invasive procedures persists. We assessed safety and tissue adequacy for molecular profiling among repeat postprogression percutaneous transthoracic needle aspirations and biopsies (rebiopsies). Materials and Methods. All lung biopsies performed at our hospital from 2009 to 2017 were reviewed. Complications were classified by Society of Interventional Radiology criteria. Complication rates between rebiopsies in EGFR-mutants and all other lung biopsies (controls) were compared using Fisher's exact test. Success of molecular profiling was recorded. Results. During the study period, nine thoracic radiologists performed 107 rebiopsies in 75 EGFR-mutant patients and 2,635 lung biopsies in 2,347 patients for other indications. All biopsies were performed with computed tomography guidance, coaxial technique, and rapid on-site pathologic evaluation (ROSE). The default procedure was to take 22-gauge fine-needle aspirates (FNA) followed by 20-gauge tissue cores. Minor complications occurred in 9 (8.4%) rebiopsies and 503 (19.1%; p = .004) controls, including pneumothoraces not requiring chest tube placement (4 [3.7%] vs. 426 [16.2%] in rebiopsies and controls, respectively; p < .001). The only major complication was pneumothorax requiring chest tube placement, occurring in zero rebiopsies and 38 (1.4%; p = .4) controls. Molecular profiling was requested in 96 (90%) rebiopsies and successful in 92/96 (96%). Conclusion. At our center, repeat lung biopsies for postprogression molecular profiling of EGFR-mutant lung cancers result in fewer complications than typical lung biopsies. Coaxial technique, FNA, ROSE, and multiple 20-gauge tissue cores result in excellent specimen adequacy. The Oncologist 2019;24:1570-1576 Implications for Practice: Repeat percutaneous transthoracic needle aspirations and biopsies for postprogression molecular profiling of epidermal growth factor receptor (EGFR)-mutant lung cancer are safe in everday clinical practice. Coaxial technique, fine-needle aspirates, rapid on-site pathologic evaluation, and multiple 20-gauge tissue cores result in excellent specimen adequacy. Although liquid biopsies are increasingly used, their sensitivity for analysis of resistant EGFR-mutant lung cancers remains limited. Tissue biopsies remain important in this context, especially because osimertinib is now in the frontline setting and T790M is no longer the major finding of interest on molecular profiling.
Background Research increasingly focuses on identifying individuals at greater risk of colorectal cancer (CRC) to enhance colonoscopy screening efficacy. Objective The objective of this article is to determine associations between chronic liver disease and lesions along the colorectal adenoma-carcinoma sequence. Methods This retrospective study encompasses consecutive liver disease patients (LDPs) of all etiologies evaluated for liver transplantation at a single institution and a control group of liver-healthy patients (LHPs) undergoing colonoscopy as part of the German CRC screening program. Rates of polyps, adenomas, high-risk situations (HRS) and CRC were analyzed in univariable and multivariable settings adjusting for age, gender, body mass index and number of colonoscopies. Differences between LHPs and LDPs and between cirrhotic and noncirrhotic hepatopathy were assessed. Results In total, 1046 patients (52.6% male, median age 59.6 years) were included, of whom 38.9% had liver disease. A total of 41.0% of all patients showed polyps, 23.2% adenomas, 10.0% HRS, and 0.5% CRC. LDPs were more likely to develop polyps, adenomas and HRS than LHPs, both in univariable and multivariable analysis. There were no significant differences between cirrhotic and noncirrhotic patients. Conclusion Chronic liver disease of any etiology is associated with colonic lesions of the colorectal adenoma-carcinoma sequence, independent of cirrhosis. LDPs should receive intensified, and earlier, colonoscopy screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.