This paper presents the use of machine learning (ML) to facilitate the design of dielectric-filled Slotted Waveguide Antennas (SWAs) with specified sidelobe levels. Conventional design methods for air-filled SWAs require the simultaneous solving of complex equations to deduce the antenna's design parameters, which typically requires further manual simulation-based optimization to reach the desired resonance frequency and sidelobe level ratio (SLR). The few works that investigated the design of filled SWAs, did not optimize the design for a specified SLR. For an accelerated design process in the case of specified SLRs, we formulate the design of dielectric-filled SWAs as a regression problem where based on input specifications of the antenna's SLR, reflection coefficient, frequency of operation, and relative permittivity of the dielectric material, the developed ML model predicts the filled SWA's design parameters fast and with very low error. These parameters include the unified slots length and the non-uniform slots displacements required to achieve the desired performance. We experiment with several regressive ML algorithms and provide a comparative study of their results. Our numerical evaluations and validation experiments with the best performing ML models demonstrate the high efficiency of the proposed ML approach in estimating the dielectric-filled SWA's design parameters in only a few milliseconds. A comparison to the design obtained through conventional optimization using the Genetic Algorithm also indicate superiority in computation time and resulting antenna performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.