The essential oils of three wild-growing Thymus species, collected from west of Iran during the flowering stage, were obtained by hydrodistillation and analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC-MS). Under the optimum extraction and analysis conditions, 44, 38, and 38 constituents (mainly monoterpenes compounds) were identified in T. kotschyanus Boiss. and Hohen, T. eriocalyx (Ronniger) Jalas, and T. daenensis subsp lancifolius (Celak) Jalas which represented 89.9%, 99.7%, and 95.8% of the oils, respectively. The main constituents were thymol (16.4-42.6%), carvacrol (7.6-52.3%), and γ-terpinene (3-11.4%). Antioxidant activity was employed by two complementary test systems, namely, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging and β-carotene/linoleic acid systems. Antioxidant activity of polar subfraction of T. daenensis subsp lancifolius (Celak) Jalas was found to be higher than those of the others in DPPH assay, while nonpolar subfraction of T. eriocalyx (Ronniger) Jalas has most antioxidant activity in β-carotene/linoleic acid test (19.1 ± 0.1 μg/mL and 96.1 ± 0.8% inhibition rate, resp.).
The aim of the present study was to evaluate the anxiolytic effects of hydroalcoholic extract (HE) of Nepeta persica Boiss. (Lamiaceae) on the elevated plus-maze (EPM) model of anxiety. The extract of arial parts of the plant was administered intraperitoneally to male NMRI mice, at various doses, 30 min before behavioural evaluation. The HE extract of N. persica at the dose of 50 mg kg−1 significantly increased the percentage of time spent and percentage of arm entries in the open arms of the EPM. This dose of plant extract affected neither animal's locomotor activity nor ketamine-induced sleeping time. The 50 mg kg−1 dose of the plant extract seemed to be the optimal dose in producing the anxiolytic effects, lower or higher doses of the plant produce either sedative or stimulant effects. At 100 mg kg−1, the plant extract increased the locomotor activity. These results suggested that the extract of N. persica at dose of 50 mg kg−1 possess anxiolytic effect with less sedative and hypnotic effects than that of diazepam and causes a non-specific stimulation at 100 mg kg−1.
The morphology of crystals has an appreciable impact role on the physicochemical properties of drugs. Drug properties such as flowability, dissolution, hardness and bioavailability may be affected by crystallinity behaviours of drugs. The objective of this study was to achieve an improved physicomechanical property of carbamazepine powder through recrystallization from aqueous solutions at different pH values. For this purpose, carbamazapine was recrystallized from aqueous solutions at different pH values (1, 7, 11). The morphology of crystals was investigated using scanning electron microscopy; X-ray powder diffraction (XRPD) was used to identify polymorphism; thermodynamic properties were analyzed using differential scanning calorimetery (DSC). Dissolution rate was determined using USP dissolution apparatus. Mechanical behavior of recrystallized carbamazepine powders was investigated by making tablets under different compaction pressure and measuring their hardness. SEM studies showed that the carbamazepine crystallization in different media affected the morphology and size of carbamazepine crystals. The shape of carbamazepine crystals changed from flaky or thin plate-like to needle shape. XRPD and DSC results ruled out any crystallinity changes occurring due to the temperature during recrystallization procedure or pH of crystallization media. The crushing strength of tablets indicated that all of the recrystallized carbamazepine samples had better compactiblity than the original carbamazepine powder. In vitro dissolution studies of carbamazepine samples showed a higher dissolution rate for carbamazepine crystals obtained from media with pH 11 and 1. Carbamazepine particles recrystallized from aqueous solutions of different pH values (all media) appeared to have superior mechanical properties to those of the original carbamazepine sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.