The results suggest that, in human coronary atherosclerosis, IL-8 is an important mediator of angiogenesis and may contribute to plaque formation via its angiogenic properties.
In patients with congestive heart failure, skeletal muscle is characterized by a smaller proportion of slow-twitch oxidative fibers and reduced oxidative enzyme activity. However, whether these changes result from disuse or occur as a direct consequence of heart failure is unresolved. To address this issue, 18 rats with heart failure 8 weeks after left coronary artery ligation and 13 sham-operated control rats underwent quantification of locomotor activity by a photocell activation technique, measurements of hemodynamics and infarct size, histochemical and morphological analyses of the soleus and plantaris muscles, and Northern analyses of muscle contractile protein and oxidative enzyme mRNA expression. Although the rats with heart failure had elevated left ventricular end-diastolic pressures (24.1 +/- 2.6 mm Hg) and a mean infarct size of 35.1 +/- 4.1%, activity levels were similar to those found in the sham-operated rats (3849 +/- 304 versus 3526 +/- 130 counts per hour). With heart failure, there was a significant reduction of type I fibers in the soleus muscle and type IIa fibers in the plantaris muscle, with corresponding increases in intermediate staining of type IIab fibers in both muscles. This was associated with a 17% decrease in citrate synthase activity in both the soleus and plantaris muscles (26.2 +/- 1.6 versus 30.7 +/- 3.4 and 29.1 +/- 2.4 versus 35.7 +/- 3.4 mumol/L per minute per gram, respectively [P < .05]). In the soleus muscle, mRNA for both beta-myosin heavy chains and cytochrome C oxidase III (normalized to 18S RNA) was reduced (0.27 +/- 0.02 versus 0.65 +/- 0.02 and 0.23 +/- 0.04 versus 0.64 +/- 0.02 U), whereas the messages for IIx and IIb myosin heavy chains were increased. A similar decrease in messages for cytochrome oxidase and the primary myosin isoform was observed in the plantaris muscle. Both soleus beta-myosin heavy chain and cytochrome C oxidase expression show significant inverse relationships to left ventricular end-diastolic pressure and infarct size. In contrast, there was no relationship between either beta-myosin heavy chain or cytochrome C oxidase expression and locomotor activity. These results indicate that in rats heart failure produces changes in skeletal muscle gene expression at the pretranslational level that cannot be explained by inactivity.
These results indicate that congestive heart failure is associated with changes in the characteristics of skeletal muscle and local as well as systemic exercise performance. There are fewer slow twitch fibers, smaller fast twitch fibers and lower succinate dehydrogenase activity. The latter finding suggests that mitochondrial content of muscle is reduced in heart failure and that impaired aerobic-oxidative capacity may play a role in the limitation of systemic exercise capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.