Interacting with computers is a ubiquitous activity for millions of people. Repetitive or specialized tasks often require creation of small, often one-off, programs. End-users struggle with learning and using the myriad of domain-specific languages (DSLs) to effectively accomplish these tasks.We present a general framework for constructing program synthesizers that take natural language (NL) inputs and produce expressions in a target DSL. The framework takes as input a DSL definition and training data consisting of NL/DSL pairs. From these it constructs a synthesizer by learning optimal weights and classifiers (using NLP features) that rank the outputs of a keyword-programming based translation. We applied our framework to three domains: repetitive text editing, an intelligent tutoring system, and flight information queries. On 1200+ English descriptions, the respective synthesizers rank the desired program as the top-1 and top-3 for 80% and 90% descriptions respectively. 2015/9/2 arXiv:1509.00413v1 [cs.PL] 1 Sep 2015
We present TEGCER, an automated feedback tool for novice programmers. TEGCER uses supervised classification to match compilation errors in new code submissions with relevant pre-existing errors, submitted by other students before. The dense neural network used to perform this classification task is trained on 15000+ error-repair code examples. The proposed model yields a test set classification Pred@3 accuracy of 97.7% across 212 error category labels. Using this model as its base, TEGCER presents students with the closest relevant examples of solutions for their specific error on demand. A large scale (N > 230) usability study shows that students who use TEGCER are able to resolve errors more than 25% faster on average than students being assisted by human tutors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.