Due to their long domestication time course, many industrial Saccharomyces cerevisiae strains are adopted in numerous processes mostly for historical reasons instead of scientific and technological needs. As such, there is still significant room for improvement for industrial yeast strains relying on yeast biodiversity. This paper strives to regenerate biodiversity with the innovative application of classic genetic methods to already available yeast strains. Extensive sporulation was indeed applied to three different yeast strains, specifically selected for their different origins as well as backgrounds, with the aim of clarifying how new variability was generated. A novel and easy method to obtain mono-spore colonies was specifically developed, and, to reveal the extent of the generated variability, no selection after sporulation was introduced. The obtained progenies were then tested for their growth in defined mediums with high stressor levels. A considerable and strain-specific increase in both phenotypic and metabolomic variability was assessed, and a few mono-spore colonies were found to be of great interest for their future exploitation in selected industrial processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.