Local thermal equilibrium (LTE) is a frequently-employed hypothesis when analysing convection heat transfer in porous media. However, investigation of the non-equilibrium phenomenon exhibits that such hypothesis is typically not true for many circumstances such as rapid cooling or heating, and in industrial applications involving immediate transient thermal response, leading to a lack of local thermal equilibrium (LTE). Therefore, for the sake of appropriately conduct the technological process, it has become necessary to examine the validity of the LTE assumption before deciding which energy model should be used. Indeed, the legitimacy of the LTE hypothesis has been widely investigated in different applications and different modes of heat transfer, and many criteria have been developed. This paper summarises the studies that investigated this hypothesis in forced, free, and mixed convection, and presents the appropriate circumstances that can make the LTE hypothesis to be valid. For example, in forced convection, the literature shows that this hypothesis is valid for lower Darcy number, lower Reynolds number, lower Prandtl number, and/or lower solid phase thermal conductivity; however, it becomes invalid for higher effective fluid thermal conductivity and/or lower interstitial heat transfer coefficient.
Both electrical and thermal efficiencies combine in determining and evaluating the performance of a PV/T collector. In this study, two PV/T systems consisting of poly and monocrystalline PV panels were used, which are connected from the bottom by a heat exchanger consisting of a spiral tube through which a nanofluid circulates. In this study, a base fluid, water, and ethylene glycol were used, and iron oxide nanoparticles (nano-Fe2O3) were used as an additive. The mixing was carried out according to the highest specifications adopted by the researchers, and the thermophysical properties of the fluid were carefully examined. The prepared nanofluid properties showed a limited effect of the nanoparticles on the density and viscosity of the resulting fluid. As for the thermal conductivity, it increased by increasing the mass fraction added to reach 140% for the case of adding 2% of nano-Fe2O3. The results of the zeta voltage test showed that the supplied suspensions had high stability. When a mass fraction of 0.5% nano-Fe2O3 was added the zeta potential was 68 mV, while for the case of 2%, it reached 49 mV. Performance tests showed a significant increase in the efficiencies with increased mass flow rate. It was found when analyzing the performance of the two systems for nanofluid flow rates from 0.08 to 0.17 kg/s that there are slight differences between the monocrystalline, and polycrystalline systems operating in the spiral type of exchanger. As for the case of using monocrystalline PV the electrical, thermal, and total PV/T efficiencies with 2% added Fe2O3 ranged between 10% to 13.3%, 43–59%, and 59 to 72%, respectively, compared to a standalone PV system. In the case of using polycrystalline PV, the electrical, thermal, and total PV/T efficiencies ranged from 11% to 13.75%, 40.3% to 63%, and 55.5% to 77.65%, respectively, compared to the standalone PV system. It was found that the PV/T electrical exergy was between 45, and 64 W with thermal exergy ranged from 40 to 166 W, and total exergy from 85 to 280 W, in the case of using a monocrystalline panel. In the case of using polycrystalline, the PV/T electrical, thermal, and total exergy were between 45 and 66 W, 42–172 W, and 85–238 W, respectively. The results showed that both types of PV panels can be used in the harsh weather conditions of the city of Baghdad with acceptable, and efficient productivity.
The operation of engines using rapeseed methyl ester (RME) and ultralow sulfur diesel (ULSD) was tested for the combustion properties, emitted regulated, unregulated exhaust pollutants, and the size of nanoparticles. The combustion analysis showed higher apparent heat release rate and shorter ignition delay period during RME combustion than during ULSD combustion. The ULSD engine has a combustion chamber maximum pressure relatively higher than that of RME. This study showed that the heat release rate of ULSD is always higher than that of RME while more fuel consumption occurred from the combustion of biodiesel in comparison with diesel. When the engine is running on RME, HC and NOx formation increased at high loads up to 15% and 13%, respectively; meanwhile, CO concentrations reduced by 30.9% for the same conditions. Most of the particulate matter (PM) emitted from a diesel engine has a particle size from 5 to 100 nm, while the particle size from ULSD ranged from 5 to 40 nm. Overloading the engine caused a decrease in the sizes of emitted PM for both fuels. The smoke number for RME was less than that for ULSD by 33.9% at high loads. For high engine load, the cumulative concentration number for the nucleation mode decreased, while it increased for the accumulation mode. Furthermore, measurements of formaldehyde, ethane, methane, acetylene, ethylene, propylene, and isocyanic acid emissions showed the presence of these harmful substances at very low concentrations (8 ppm) for both fuels.
Many researchers have analyzed the equilibrium adsorption isotherm mechanism of water vapor molecules on 4A, 3A, Y and X zeolites for decades. The demand for moisture removal continues to increase along with the increasing stringency of requirements for product quality control and production energy efficiency. Due to the negative charge of the zeolite framework, exchangeable compensation cations such as Na+, Li+, K+, Ba2+, Mg2+, and Ca2+ might be added. These cations are located at different sites within the framework and with different concentrations. Each cation shows a strong affinity to bond with water molecules. Adsorption sites must show a characteristic energy signature corresponding to the adsorbed amount. The values of enthalpies and entropies at each site are different since the bonding strength between the moisture molecules and cations of the site is also different. These exchangeable cations have a very important contribution in determining the zeolites adsorptive properties and selectivity. This investigation of the water vapor adsorption mechanism reveals that size, location, and type of exchangeable compensation cations have a concrete relationship to the adsorption process and zeolite cage capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.