This study aimed to develop and validate an automated segmentation method for surface muscles using a three-dimensional (3D) U-Net based on selective voxel patches from whole-body computed tomography (CT) images. Our method defined a voxel patch (VP) as the input images, which consisted of 56 slices selected at equal intervals from the whole slices. In training, one VP was used for each case. In the test, multiple VPs were created according to the number of slices in the test case. Segmentation was then performed for each VP and the results of each VP merged. The proposed method achieved a segmentation accuracy mean dice coefficient of 0.900 for 8 cases. Although challenges remain in muscles adjacent to visceral organs and in small muscle areas, VP is useful for surface muscle segmentation using whole-body CT images with limited annotation data. The limitation of our study is that it is limited to cases of muscular disease with atrophy. Future studies should address whether the proposed method is effective for other modalities or using data with different imaging ranges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.