We consider the problem of designing linear precoders for fixed multiple input multiple output (MIMO) receivers. Two different design criteria are considered. In the first, we minimize the transmitted power subject to signal to interference plus noise ratio (SINR) constraints. In the second, we maximize the worst case SINR subject to a power constraint. We show that both problems can be solved using standard conic optimization packages. In addition, we develop conditions for the optimal precoder for both of these problems, and propose two simple fixed point iterations to find the solutions which satisfy these conditions. The relation to the well known downlink uplink duality in the context of joint downlink beamforming and power control is also explored. Our precoder design is general, and as a special case it solves the beamforming problem. In contrast to most of the existing precoders, it is not limited to full rank systems. Simulation results in a multiuser system show that the resulting precoders can significantly outperform existing linear precoders.
Does the default mode network (DMN) reconfigure to encode information about the changing environment? This question has proven difficult, because patterns of functional connectivity reflect a mixture of stimulus-induced neural processes, intrinsic neural processes and non-neuronal noise. Here we introduce inter-subject functional correlation (ISFC), which isolates stimulus-dependent inter-regional correlations between brains exposed to the same stimulus. During fMRI, we had subjects listen to a real-life auditory narrative and to temporally scrambled versions of the narrative. We used ISFC to isolate correlation patterns within the DMN that were locked to the processing of each narrative segment and specific to its meaning within the narrative context. The momentary configurations of DMN ISFC were highly replicable across groups. Moreover, DMN coupling strength predicted memory of narrative segments. Thus, ISFC opens new avenues for linking brain network dynamics to stimulus features and behaviour.
Abstract-We consider the problem of linear zero forcing precoding design, and discuss its relation to the theory of generalized inverses in linear algebra. Special attention is given to a specific generalized inverse known as the pseudo-inverse. We begin with the standard design under the assumption of a total power constraint and prove that precoders based on the pseudo-inverse are optimal in this setting. Then, we proceed to examine individual per-antenna power constraints. In this case, the pseudo-inverse is not necessarily the optimal generalized inverse. In fact, finding the optimal inverse is non-trivial and depends on the specific performance measure. We address two common criteria, fairness and throughput, and show that the optimal matrices may be found using standard convex optimization methods. We demonstrate the improved performance offered by our approach using computer simulations.
We address covariance estimation in the sense of minimum mean-squared error (MMSE) for Gaussian samples. Specifically, we consider shrinkage methods which are suitable for high dimensional problems with a small number of samples (large p small n). First, we improve on the Ledoit-Wolf (LW) method by conditioning on a sufficient statistic. By the Rao-Blackwell theorem, this yields a new estimator called RBLW, whose mean-squared error dominates that of LW for Gaussian variables. Second, to further reduce the estimation error, we propose an iterative approach which approximates the clairvoyant shrinkage estimator. Convergence of this iterative method is established and a closed form expression for the limit is determined, which is referred to as the oracle approximating shrinkage (OAS) estimator. Both RBLW and OAS estimators have simple expressions and are easily implemented. Although the two methods are developed from different persepctives, their structure is identical up to specified constants. The RBLW estimator provably dominates the LW method. Numerical simulations demonstrate that the OAS approach can perform even better than RBLW, especially when n is much less than p. We also demonstrate the performance of these techniques in the context of adaptive beamforming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.