Ulcerative colitis (UC) is a chronic inflammatory bowel disease that is closely associated with colon cancer. Expression of the enzyme heparanase is clearly linked to colon carcinoma progression, but its role in UC is unknown. Here we demonstrate for what we believe to be the first time the importance of heparanase in sustaining the immune-epithelial crosstalk underlying colitis-associated tumorigenesis. Using histological specimens from UC patients and a mouse model of dextran sodium sulfate-induced colitis, we found that heparanase was constantly overexpressed and activated throughout the disease. We demonstrate, using heparanase-overexpressing transgenic mice, that heparanase overexpression markedly increased the incidence and severity of colitis-associated colonic tumors. We found that highly coordinated interactions between the epithelial compartment (contributing heparanase) and mucosal macrophages preserved chronic inflammatory conditions and created a tumor-promoting microenvironment characterized by enhanced NF-κB signaling and induction of STAT3. Our results indicate that heparanase generates a vicious cycle that powers colitis and the associated tumorigenesis: heparanase, acting synergistically with the intestinal flora, stimulates macrophage activation, while macrophages induce production (via TNF-α-dependent mechanisms) and activation (via secretion of cathepsin L) of heparanase contributed by the colon epithelium. Thus, disruption of the heparanase-driven chronic inflammatory circuit is highly relevant to the design of therapeutic interventions in colitis and the associated cancer.
Diabetic nephropathy (DN) is the major life-threatening complication of diabetes. Abnormal permselectivity of glomerular basement membrane (GBM) plays an important role in DN pathogenesis. Heparanase is the predominant enzyme that degrades heparan sulfate (HS), the main polysaccharide of the GBM. Loss of GBM HS in diabetic kidney was associated with increased glomerular expression of heparanase; however, the causal involvement of heparanase in the pathogenesis of DN has not been demonstrated. We report for the first time the essential involvement of heparanase in DN. With the use of Hpse-KO mice, we found that deletion of the heparanase gene protects diabetic mice from DN. Furthermore, by investigating the molecular mechanism underlying induction of the enzyme in DN, we found that transcription factor early growth response 1 (Egr1) is responsible for activation of heparanase promoter under diabetic conditions. The specific heparanase inhibitor SST0001 markedly decreased the extent of albuminuria and renal damage in mouse models of DN. Our results collectively underscore the crucial role of heparanase in the pathogenesis of DN and its potential as a highly relevant target for therapeutic interventions in patients with DN.
Purpose Women with BRCA1 and BRCA2 mutations have an elevated risk of breast cancer and ovarian cancer, but also of developing second primary breast cancer. BRCA1/2 mutation carriers with breast cancer must choose between breast conservation (BCT) and mastectomy (M) yet data on outcomes are limited. The purpose of this study is to compare BCT to M in BRCA1/2 carriers. Methods 655 women with BRCA1/2 mutations diagnosed with breast cancer and treated with BCT (n=302) or M (n=353) were identified and underwent follow up to assess local, regional and systemic recurrence. Results Local failure as first failure was significantly more likely in those treated with BCT compared to M, with a cumulative estimated risk of 23.5% vs. 5.5%, respectively, at 15 years (p<0.0001); 15-year estimates in carriers treated with BCT and chemotherapy was 11.9% (p=0.08 when compared to M). Most events appeared to be second primary cancers rather than failure to control the primary tumor. The risk of contralateral breast cancer was high in all groups, exceeding 40%, but was not statistically significantly different by use of adjuvant radiotherapy (RT) or not, suggesting no added risk from scatter RT at 10 and 15 years. There were no differences seen in regional or systemic recurrences between the BCT and M groups, and no difference in overall survival. Conclusions BRCA1/2 mutation carriers with breast cancer have similar survivals whether treated with M or BCT. However, women undergoing BCT have an elevated risk of a second in-breast event that is significantly reduced in the presence of chemotherapy. Contralateral breast cancer events are very common.
Peptide receptor radionuclide therapy (PRRT) is an established treatment of metastatic neuroendocrine tumors grade 1–2 (G1–G2). However, its possible benefit in high-grade gastroenteropancreatic (GEP) neuroendocrine neoplasms (NEN G3) is largely unknown. We therefore aimed to assess the benefits and side effects of PRRT in patients with GEP NEN G3. We performed a retrospective cohort study at 12 centers to assess the efficacy and toxicity of PRRT in patients with GEP NEN G3. Outcomes were response rate, disease control rate, progression-free survival (PFS), overall survival (OS) and toxicity. We included 149 patients (primary tumor: pancreatic n = 89, gastrointestinal n = 34, unknown n = 26). PRRT was first-line (n = 30), second-line (n = 62) or later-line treatment (n = 57). Of 114 patients evaluated, 1% had complete response, 41% partial response, 38% stable disease and 20% progressive disease. Of 104 patients with documented progressive disease before PRRT, disease control rate was 69%. The total cohort had median PFS of 14 months and OS of 29 months. Ki-67 21–54% (n = 125) vs Ki-67 ≥55% (n = 23): PFS 16 vs 6 months (P < 0.001) and OS 31 vs 9 months (P < 0.001). Well (n = 60) vs poorly differentiated NEN (n = 62): PFS 19 vs 8 months (P < 0.001) and OS 44 vs 19 months (P < 0.001). Grade 3–4 hematological or renal toxicity occurred in 17% of patients. This large multicenter cohort of patients with GEP NEN G3 treated with PRRT demonstrates promising response rates, disease control rates, PFS and OS as well as toxicity in patients with mainly progressive disease. Based on these results, PRRT may be considered for patients with GEP NEN G3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.