Listeriolysin O (LLO), a sulfhydryl-activated pore-forming protein from Listeria monocytogenes, was tested and utilized for promoting plasmid DNA (pDNA) delivery into the cytosol of cells in culture. To render pDNA-complexing capability to LLO, the unique cysteine 484 of LLO was conjugated to polycationic peptide protamine (PN) at a 1:1 molar ratio through a reversible, endosome-labile disulfide bond. The sulfhydryl-oxidized LLO construct, LLO-s-s-PN, completely lacked its pore-forming activity, yet regained its original activity upon reduction. The enhanced cytosolic delivery using this construct therefore relies on the requisite reduction of the disulfide bond in LLO-s-s-PN by endogenous cellular reducing capacity. Condensed PN/pDNA complexes incorporating LLO-s-s-PN were tested for their enhanced gene delivery capability monitoring reporter gene expression in HEK293, RAW264.7, P388D1 cell lines and bone-marrowderived macrophages in the presence of serum. Dramatic enhancement was observed for all tested complexes with varying weight ratios. The effect was most prominent at 0.64-0.80 (w/w) of PN/pDNA upon replacing 1-4% of PN with LLO-s-s-PN, resulting in approximately three orders of magnitude higher luciferase expression compared to PN/ pDNA without apparent toxicity. These results demonstrate that incorporation of endosomolytic LLO into pDNA delivery systems in a controlled fashion is a promising approach of enhancing delivery into the cytosol of target cells in gene delivery strategies.
PepT1 is a transporter of proven pharmaceutical utility for enhancing oral absorption. A high-throughput, robust functional assay, capable of distinguishing PepT1 binders from substrates, allowing identification and/or prediction of drug candidate activation was developed. An MDCK epithelial cell line was transfected with rPepT1. The high level of stable rPepT1 expression that was achieved enabled development of a miniaturized PepT1 assay in a 96-well format, which could be scaled to 384 wells. The assay is based on measurement of membrane depolarization resulting from the cotransport of protons and PepT1 substrates. Membrane potential changes are tracked with a voltage-sensitive fluorescent indicator. Control (mock-transfected) cells are used to determine nonspecific membrane potential changes. A variety of fluorescent dyes were tested during initial assay design, including intracellular pH and membrane potential indicators. A membrane potential indicator was chosen because of its superior performance. Upon PepT1 activation with glycylsarcosine, dose-dependent membrane depolarization was observed with an EC50 of 0.49 mM. Maximum depolarization was dependent on the level of PepT1 expression. Testing of 38 known PepT1 substrates, binders, and nonbinders demonstrated that this assay accurately distinguished substrates from binders and from nonbinders. Initial validation of this novel assay indicates that it is sensitive and robust, and can distinguish between transporter substrates and antagonists. This important distinction has been previously achieved only with lower-throughput assays. This assay might also be used to determine substrate potency and establish a high-quality data set for PepT1 SAR modeling.
The reduced 3-suffix solubility equation (R3SSE) is applied to the characterization of solubility in the ethanol-water system. The data needed are the solubility of the compound in each of the pure solvents and at one ethanol-water composition. This composition has been estimated from solubility data to be 0.56 volume fraction of ethanol. The solubility obtained at this volume fraction is used to estimate the ternary solute-solvent interaction constant, C2. The R3SSE, with the C2 thus obtained, predicts the mixed solvent solubilities of the compounds tested, as accurately as that obtained from several volume fractions. The superiority of the R3SSE over two related equations--a simple second-degree polynomial equation and a simplified form of the R3SSE which neglects contributions to solubility from the solvent mixture--is also demonstrated for a number of solutes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.