Controllable manipulation and effective mixing of fluids and colloids at the nanoscale is made exceptionally difficult by the dominance of surface and viscous forces. The use of megahertz (MHz)-order vibration has dramatically expanded in microfluidics, enabling fluid manipulation, atomization, and microscale particle and cell separation. Even more powerful results are found at the nanoscale, with the key discovery of new regimes of acoustic wave interaction with 200 fL droplets of deionized water. It is shown that 40 MHz-order surface acoustic waves can manipulate such droplets within fully transparent, high-aspect ratio, 100 nm tall, 20-130 micron wide, 5-mm long nanoslit channels. By forming traps as locally widened regions along such a channel, individual fluid droplets may be propelled from one trap to the next, split between them, mixed, and merged. A simple theory is provided to describe the mechanisms of droplet transport and splitting.
Past forms of acoustic streaming, named after their progenitors Eckart (1948), Schlichting (1932), and Rayleigh (1884), serve to describe fluid and particle transport phenomena from macro to micro scales. Governed by the fluid viscosity, traditional acoustic streaming arises from second-order nonlinear coupling between the fluid's density and particle velocity, with the first-order acoustic wave time-averaging to zero. We describe a form of acousto-geometric streaming that has a non-zero firstorder contribution. Experimentally discovered in nanochannels of a height commensurate with the viscous penetration depth of the fluid in the channel, it arises from nonlinear interactions between the surrounding channel deformation and the leading order acoustic pressure field, generating flow pressures three orders of magnitude greater than any known acoustically-mediated mechanism. It enables the propulsion of fluids against significant Laplace pressure, sufficient to produce 6 mm/s flow in a 130-150 nm tall nanoslit. We find quantitative agreement between theory and experiment across a variety of fluids and conditions, and identify the maximum flow rate with a channel height 1.59 times the viscous penetration depth.
We study the thinning and drainage of the intermediate liquid film between a bubble and a solid surface at close proximity in the presence of a surface acoustic wave (SAW) in the solid. Specifically, we employ the diffraction of light to observe a long air bubble confined in a solid rectangular channel filled with silicone oil. This setup, constituting a two-dimensional physical model of thin film drainage, allows us to analyze the influence of a SAW on the rate of thinning of the micron-thick liquid film separating the bubble and the solid substrate. The viscous penetration of the SAW into the liquid imposes a convective drift of mass, redistributing the fluid in the film against capillary resistance and producing a net drift of liquid out of the film. The rate of drainage of liquid from the film increases by one to several orders of magnitude in comparison to the rate of drainage due to the Laplace pressure of the bubble alone. The experimental findings agree well with a newly developed theory describing the SAW-enhanced drainage as a competition between the capillary flow and SAW-induced streaming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.