Glutaraldehyde has been used for several decades as an effective crosslinking agent for many applications including sample fixation for microscopy, enzyme and cell immobilization, and stabilization of protein crystals. Despite of its common use as a crosslinking agent, the mechanism and chemistry involved in glutaraldehyde crosslinking reaction is not yet fully understood. Here we describe feasibility study and results obtained from a new approach to investigate the process of protein crystals stabilization by glutaraldehyde crosslinking. It involves exposure of a model protein crystal (Lysozyme) to glutaraldehyde in alkaline or acidic pH for different incubation periods and reaction arrest by medium exchange with crystallization medium to remove unbound glutaraldehyde. The crystals were subsequently incubated in diluted buffer affecting dissolution of un-crosslinked crystals. Samples from the resulting solution were subjected to protein composition analysis by gel electrophoresis and mass spectroscopy while crosslinked, dissolution resistant crystals were subjected to high resolution X-ray structural analysis. Data from gel electrophoresis indicated that the crosslinking process starts at specific preferable crosslinking site by lysozyme dimer formation, for both acidic and alkaline pH values. These dimer formations were followed by trimer and tetramer formations leading eventually to dissolution resistant crystals. The crosslinking initiation site and the end products obtained from glutaraldehyde crosslinking in both pH ranges resulted from reactions between lysine residues of neighboring protein molecules and the polymeric form of glutaraldehyde. Reaction rate was much faster at alkaline pH. Different reaction end products, indicating different reaction mechanisms, were identified for crosslinking taking place under alkaline or acidic conditions.
In situ product removal (ISPR) is the fast removal of product from a producing cell thereby preventing its subsequent interference with cellular or medium components. Over the past 10 years ISPR techniques have developed substantially and its feasibility (with improvements in yield or productivity) for several processes demonstrated. Assessment of progress, however, compared to the potential benefits inherent in the ISPR approach to bioprocessing reveals that these are far from being exploited fully. Here we indicate future directions including application of the ISPR approach to a wider range of product groups and the development of novel, more specific ISPR methodologies, applicable under sterile conditions in the immediate vicinity of the producing cells. General guidelines for adaptation of an appropriate ISPR approach for a given product are also provided.
Enzyme electrodes based on complexing a water-soluble copolymer of acrylamide and vinylimidazole with [Os(dmebpy)2C1]+/2+ (dmebpy = 4,4'-dimethyl-2,2'-bipyridine) and cross-linking with oxidases by water-soluble cross-linkers are described. The potential of the polyacrylamide-based redox polymer is +55 mV (SCE), a typical electron diffusion coefficient (De) in the redox hydrogel that results from its cross-linking is (1.3 +/- 0.1) x 10(-9) cm2/s. The properties of the enzyme electrodes formed when this redox hydrogel "wired" horseradish peroxidase (HRP), lactate oxidase (LOx) or glucose oxidase (GOx) depended on the thickness of the hydrogel film, the chemistry of their cross-linking, and their enzyme content. At the wired HRP electrodes, H2O2 was electrocatalytically reduced to water at 0.0 V (SCE). Lactate and glucose were electrocatalytically oxidized at 0.16 V (SCE). The GOx electrodes, when made with 140 micrograms/cm2 thick polymer films, were selective for glucose in the presence of physiological concentrations of urate and ascorbate.
Binding sites analogous to those of sp(3) carbon are presented by concanavalin A. This lectin has now been cross-linked with a bismannopyranoside which contains the C(2) spacer required to form the computer-modeled diamondlike three-dimensional protein lattice shown in the picture.
Amplification of an 800-base template was verified in a 10-min test on a 2-microL sample of the PCR product solution. For verification, digoxigeninylated primers and biotinylated d-UTP-16-biotin were added to the amplification solution. The resulting amplified product was digoxigeninlabeled at its 3'-end and was also labeled with multiple biotin functions along its chain. The detecting electrode was coated with an electron-conducting redox hydrogel to which anti-digoxin monoclonal antibody was covalently bound. The amplified DNA was captured by the electrode through conjugation of its 3'-digoxigenin with the antibody. Exposure to a solution of horseradish peroxidase-labeled avidin led to capture of the enzyme and switched the redox hydrogel from a noncatalyst to catalyst for H2O2 electroreduction. The switching resulted in an H2O2 electroreduction current density of 2.1 +/- 0.9 microA cm-2 in 10-4 M H2O2 at Ag/AgCl potential and at 25 degrees C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.