Study Design.
Osmoviscoelastic behavior of cyclically loaded cervical intervertebral disc.
Objective.
The aim of this study was to evaluate in vitro the effects of physiologic compressive cyclic loading on the viscoelastic properties of cervical intervertebral disc and, examine how the osmoviscoelastic coupling affects time-dependent recovery of these properties following a long period of unloading.
Summary of Background Data.
The human neck supports repetitive loadings during daily activities and recovery of disc mechanics is essential for normal mechanical function. However, the response of cervical intervertebral disc to cyclic loading is still not very well defined. Moreover, how loading history conditions could affect the time-dependent recovery is still unclear.
Methods.
Ten thousand cycles of compressive loading, with different magnitudes and saline concentrations of the surrounding fluid bath, are applied to 8 motion segments (composed by 2 adjacent vertebrae and the intervening disc) extracted from the cervical spines of mature sheep. Subsequently, specimens are hydrated during 18 hours of unloading. The viscoelastic disc responses, after cyclic loading and recovery phase, are characterized by relaxation tests.
Results.
Viscoelastic behaviors are significantly altered following large number of cyclic loads. Moreover, after 18-hour recovery period in saline solution at reference concentration (0.15 mol/L), relaxation behaviors were fully restored. Nonetheless, full recovery is not obtained whether the concentration of the surrounding fluid, that is, hypo-, iso-, or hyper-osmotic conditions.
Conclusion.
Cyclic loading effects and full recovery of viscoelastic behavior after hydration at iso-osmotic condition (0.15 mol/L) are governed by osmotic attraction of fluid content in the disc due to imbalance between the external load and the swelling pressure of the disc. After removal of the load, the disc recovers its viscoelastic properties following period of rest. Nevertheless, the viscoelastic recovery is a chemically activated process and its dependency on saline concentration is governed by fluid flow due to imbalance of ions between the disc tissues and the surrounding fluid.
Level of Evidence: 3
The intervertebral disc exhibits a complex inelastic response characterized by relaxation, hysteresis during cyclic loading and rate dependency. All these inelastic phenomena depend on osmotic interactions between disc tissues and their surrounding chemical environment. Coupling between osmotic and inelastic effects is not fully understood, so this article aimed to study the influence of chemical conditions on the inelastic behaviour of the intervertebral disc in response to different modes of loading. A total of 18 non-frozen 'motion segments' (two vertebrae and the intervening soft tissues) were dissected from the cervical spines of mature sheep. The motion segments were loaded in tension, compression and torsion at various loading rates and saline concentrations. Analysis of variance showed that saline concentration significantly influenced inelastic effects in tension and especially in compression (p \ 0.05), but not in torsion. Opposite effects were seen in tension and compression. An interpretation of the underlying osmo-inelastic mechanisms is proposed in which two sources of inelastic effects are identified, that is, extracellular matrix rearrangements and fluid exchange created by osmosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.