Polymer-inorganic nanocomposites are a recently developed class of materials that have altered physical or chemical properties with respect to the pure polymer, inorganic host, or their micro- and macrocomposites. Lower generation (G0.0-2.0) polyamidoamine (PAMAM) dendrimer/sodium montmorillonite (Na-MMT) nanocomposites were synthesized in a solution-phase exfoliation adsorption reaction. These are the first reports of the G0.0/ and G1.0/Na-MMT nanocomposites and of a structurally-ordered G2.0/Na-MMT. The materials were characterized using powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). PAMAM characteristics at acidic and basic aqueous media were studied using capillary zone electrophoresis (CZE). Pseudospherical PAMAM dendrimers in aqueous medium attain a highly flattened conformation within the confined space between MMT sheets upon nanocomposite formation. The nanocomposite structure depends on the PAMAM generation and the starting dendrimer/organic composition. G0.0 always forms monolayer structures (d = 0.42 nm), while G2.0 forms monolayer structure, mixed phase, and bilayer structures (d = 0.84 nm) at lower, intermediate, and higher organic content, respectively, showing an interesting monolayer to bilayer transition. G1.0 showed an intermediate behavior, with monolayer to mixed-phase transition at the reactant ratios studied. This monolayer arrangement of PAMAM/clay nanocomposites is reported for the first time. Maximum organic contents of G0.0 monolayer and G2.0 bilayer nanocomposites were ∼7% and ∼14%, respectively. Gallery expansions were similar to those observed with linear polymer intercalates, but the packing fractions (0.31-0.32) were 2-3 times lower. At acidic pH, the nanocomposites forming only monolayer structures are obtained, indicating a stronger electrostatic attraction between MMT and protonated PAMAM, and these nanocomposites formed more slowly and were more ordered. Na(+) ions play a significant role in nanocomposite formation. At high pH, PAMAMs show high mobility, ζ potential, and surface charge densities due to Na(+) complexation in solution. FTIR data indicates that both Na-MMT and PAMAM structural units are preserved in the nanocomposites obtained.
Methods for catalytic activation followed by electroless metal plating have been developed for their potential use for 2.5D and 3D Through -Si Vias (TSVs) packaging applications. SiO x and TiO x nanolayers with catalytic Pd particles have been deposited that are low in thickness (< 30nm) and roughness (< 2nm). Metal (Ni or Co) has been electrolessly plated with P and W to ensure low roughness and aid in limiting inter-diffusion between the metal barrier-seed layer and electroplated copper. Electroless Co or Ni films containing over 12% P and 2% W provided an effective barrier layer. These methods could be also applied to Through -Glass Vias (TGVs) substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.