The objectives of the study were to use a heat stress scoring system to evaluate the severity of heat stress on dairy cows using different heat abatement techniques. The scoring system ranged from 1 to 4, where 1 = no heat stress; 2 = mild heat stress; 3 = severe heat stress; and 4 = moribund. The accuracy of the scoring system was then predicted using 3 machine learning techniques: logistic regression, Gaussian naïve Bayes, and random forest. To predict the accuracy of the scoring system, these techniques used factors including temperature-humidity index, respiration rate, lying time, lying bouts, total steps, drooling, open-mouth breathing, panting, location in shade or sprinklers, somatic cell score, reticulorumen temperature, hygiene body condition score, milk yield, and milk fat and protein percent. Three different treatments, namely, portable shade structure, portable polyvinyl chloride pipe sprinkler system, or control with no heat abatement, were considered, where each treatment was replicated 3 times with 3 second-trimester lactating cows. Results indicate that random forest outperformed the other 2 methods, with respect to both accuracy and precision, in predicting the sprinkler group's score. Both logistic regression and random forest were consistent in predicting scores for control, shade, and combined groups. The mean probability of predicting non-heat-stressed cows was highest for cows in the sprinkler group. Finally, the logistic regression method worked best for predicting heat-stressed cows in control, shade, and combined. The insights gained from these results could aid dairy producers to detect heat stress before it becomes severe, which could decrease the negative effects of heat stress, such as milk loss.