Background: Up-regulation of hsp90 gene expression occurs in numerous cancers such as lung cancer. D,L-lactic-co-glycolic acid-poly ethylene glycol-17-dimethylaminoethylamino-17-demethoxy geldanamycin (PLGA-PEG-17DMAG) complexes and free 17-DMAG may inhibit the expression. The purpose of this study was to examine whether nanocapsulating 17DMAG improves the anti cancer effect over free 17DMAG in the A549 lung cancer cell line. Materials and Methods: Cells were grown in RPMI 1640 supplemented with 10% FBS. Capsulation of 17DMAG is conducted through double emulsion, then the amount of loaded drug was calculated. Other properties of this copolymer were characterized by Fourier transform infrared spectroscopy and H nuclear magnetic resonance spectroscopy. Assessment of drug cytotoxicity on the grown of lung cancer cell line was carried out through MTT assay. After treatment, RNA was extracted and cDNA was synthesized. In order to assess the amount of hsp90 gene expression, real-time PCR was performed. Results: In regard to the amount of the drug load, IC50 was significant decreased in nanocapsulated(NC) 17DMAG in comparison with free 17DMAG. This was confirmed through decrease of HSP90 gene expression by real-time PCR. Conclusions:The results demonstrated that PLGA-PEG-17DMAG complexes can be more effective than free 17DMAG in down-regulating of hsp90 expression by enhancing uptake by cells. Therefore, PLGA-PEG could be a superior carrier for this kind of hydrophobic agent.
Conclusions:The results demonstrated that β-cyclodextrin-17AAG complexes are more effective than free 17AAG in down-regulating HSP90 expression due to enhanced β-cyclodextrin-17AAG uptake by cells. Therefore, β-cyclodextrin could be superior carrier for this kind of hydrophobic agent.
Leptin plays the role of mitogenic factor in the breast carcinogenesis. Therefore, it could be considered as a target for breast cancer therapy. Leptin gene expression could be modulated by activation of estrogen receptors. Silibinin is an herbal compound with anti-cancer activity on prostate and colorectal cancers. Based on the fact that targeting of leptin can be considered as a novel strategy for breast cancer therapy, the aim of this study was the investigation of potentiality of silibinin for inhibition of leptin gene expression and secretion, and its link with expression of estrogen receptors. Cytotoxic effect of silibinin on T47D breast cancer cells was investigated by MTT assay test after 24, 48 and 72 h treatments with different concentrations of silibinin. The levels of leptin, estrogen receptor α and estrogen receptor β genes expression was measured by reverse-transcription real-time PCR. The amount of secreted leptin in the culture medium was determined by ELISA. Data were statistically analyzed by one-way ANOVA test. Silibinin inhibits growth of T47D cells in a time and dose dependent manner. There was significant difference between control and treated cells in the levels of leptin, estrogen receptor β expression levels and the quantity of secreted leptin was decreased in the treated cells in comparison to control cells. In conclusion, silibinin inhibits the expression and the secretion of leptin and in the future it might probably be a drug candidate for breast cancer therapy through leptin targeting.
Background: Nowadays, the encapsulation of cytotoxic chemotherapeutic agents is attracting interest as a method for drug delivery. We hypothesized that the efficiency of helenalin might be maximized by encapsulation in β-cyclodextrin nanoparticles. Helenalin, with a hydrophobic structure obtained from flowers of Arnica chamissonis and Arnica Montana, has anti-cancer and anti-inflammatory activity but low water solubility and bioavailability. β-Cyclodextrin (β-CD) is a cyclic oligosaccharide comprising seven D-glucopyranoside units, linked through 1,4-glycosidic bonds. Materials and Methods: To test our hypothesis, we prepared β-cyclodextrinhelenalin complexes to determine their inhibitory effects on telomerase gene expression by real-time polymerase chain reaction (q-PCR) and cytotoxic effects by colorimetric cell viability (MTT) assay. Results: MTT assay showed that not only β-cyclodextrin has no cytotoxic effect on its own but also it demonstrated that β-cyclodextrinhelenalin complexes inhibited the growth of the T47D breast cancer cell line in a time and dose-dependent manner. Our q-PCR results showed that the expression of telomerase gene was effectively reduced as the concentration of β-cyclodextrin-helenalin complexes increased. Conclusions: β-Cyclodextrin-helenalin complexes exerted cytotoxic effects on T47D cells through down-regulation of telomerase expression and by enhancing Helenalin uptake by cells. Therefore, β-cyclodextrin could be superior carrier for this kind of hydrophobic agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.