Green hydrogen for mobility represents an alternative to conventional fuel to decarbonize the transportation sector. Nevertheless, the thermodynamic properties make the transport and the storage of this energy carrier at standard conditions inefficient. Therefore, this study deploys a georeferenced optimal transport infrastructure for four base case scenarios in France and Germany that differs by production distribution based on wind power potential and demand capacities for the mobility sector at different penetration shares for 2030 and 2050. The restrained transport network to the road infrastructure allows focusing on the optimum combination of trucks operating at different states of aggregations and storage technologies and its impact on the annual cost and hydrogen flow using linear programming. Furthermore, four other scenarios with production cost investigate the impact of upstream supply chain cost, and eight scenarios with daily transport and storage optimization analyse the modeling method sensitivity. The results show that compressed hydrogen gas at a high presser level around 500 bar was, on average, a better option. However, at an early stage of hydrogen fuel penetration, substituting compressed gas at low to medium pressure levels by liquid organic hydrogen carrier minimizes the transport and storage costs. Finally, in France, hydrogen production matches population distribution, in contrast to Germany, which suffers from supply and demand disparity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.