Purpose Users are the key players in an online social network (OSN), so the behavior of the OSN is strongly related to their behavior. User weight refers to the influence of the users on the OSN. The purpose of this paper is to propose a method to identify the user weight based on a new metric for defining the time intervals. Design/methodology/approach The behavior of an OSN changes over time, thus the user weight in the OSN is different in each time frame. Therefore, a good metric for estimating the user weight in an OSN depends on the accuracy of the metric used to define the time interval. New metric for defining the time intervals is based on the standard deviation and identifies that the user weight is based on a simple exponential smoothing model. Findings The results show that the proposed method covers the maximum behavioral changes of the OSN and is able to identify the influential users in the OSN more accurately than existing methods. Research limitations/implications In event detection, when a terrorist attack occurs as an event, knowing the influential users help us to know the leader of the attack. Knowing the influential user in each time interval based on this study can help us to detect communities which formed around these people. Finally, in marketing, this issue helps us to have a targeted advertising. Practical implications User effect is a significant issue in many OSN domain problems, such as community detection, event detection and recommender systems. Originality/value Previous studies do not give priority to the recent time intervals in identifying the relative importance of users. Thus, defining a metric to compute a time interval that covers the maximum changes in the network is a major shortcoming of earlier studies. Some experiments were conducted on six different data sets to test the performance of the proposed model in terms of the computed time intervals and user weights.
The distance between users has an effect on the formation of social network ties, but it is not the only or even the main factor. Knowing all the features that influence such ties is very important for many related domains such as location-based recommender systems and community and event detection systems for online social networks (OSNs). In recent years, researchers have analyzed the role of user geo-location in OSNs. Researchers have also attempted to determine the probability of friendships being established based on distance, where friendship is not only a function of distance. However, some important features of OSNs remain unknown. In order to comprehensively understand the OSN phenomenon, we also need to analyze users’ attributes. Basically, an OSN functions according to four main user properties: user geo-location, user weight, number of user interactions, and user lifespan. The research presented here sought to determine whether the user mobility pattern can be used to predict users’ interaction behavior. It also investigated whether, in addition to distance, the number of friends (known as user weight) interferes in social network tie formation. To this end, we analyzed the above-stated features in three large-scale OSNs. We found that regardless of a high degree freedom in user mobility, the fraction of the number of outside activities over the inside activity is a significant fraction that helps us to address the user interaction behavior. To the best of our knowledge, research has not been conducted elsewhere on this issue. We also present a high-resolution formula in order to improve the friendship probability function.
The link prediction problem is becoming an important area of online social network (OSN) research. The existing methods that have been developed to address this problem mostly try to predict links based on structural information about the whole of the user lifespan. In addition, most of them do not consider user attributes such as user weight, density of interaction and geo-distance, all of which have an influence on the prediction of future links in OSNs due to the human-centric nature of these networks. Moreover, an OSN is a dynamic environment because users join and leave communities based on their interests over time. Therefore, it is necessary to predict links in real time. Therefore, the current study proposes a new method based on time and user attributes to predict links based on changes in user communities, where the changes in the user communities are indicative of users’ interests. The proposed method is tested on the UKM dataset and its performance is compared with that of 10 well-known methods and another community-based method. The area-under-the-curve results show that the proposed method is more accurate than all of the compared methods.
The world is witnessing the daily emergence of a vast variety of online social networks and community detection problem is a major research area in online social network studies. The existing community detection algorithms are mostly edge-based and are evaluated using the modularity metric benchmarks. However, these algorithms have two inherent limitations. Firstly, they are based on a pure mathematical object which considers the number of connections in each community as the main measures. Consequently, a resolution limit and low accuracy in finding community members in often observed. Whereas, online social networks are dynamic networks and the key players are humans whose main attributes such as lifespan, geo-location, the density of interactions, and user weight, change over time. These attributes tend to influence the formation of user communities in any category of online social network. Secondly, the output structure of existing community detection algorithms is usually provided as a graph and dendrogram. A graph structure, is, however, characterized by a high memory complexity, and subsequently exponential search time complexity. Implementing dendrogram such a complex structure is complicated. To address memory complexity and the accuracy rate of the community detection issues, this paper proposes a new temporal user attribute-based algorithm, namely the recently largest interaction based on the attributes of a typical online social network user. Experimental results show that the proposed algorithm outperforms eight well-known algorithms in this domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.