As extracellular vesicles that play an active role in intercellular communication by transferring cellular materials to recipient cells, exosomes offer great potential as a natural therapeutic drug delivery vehicle. The inflammatory responses in various disease models can be attenuated through introduction of super-repressor IκB (srIκB), which is the dominant active form of IκBα and can inhibit translocation of nuclear factor κB into the nucleus. An optogenetically engineered exosome system (EXPLOR) that we previously developed was implemented for loading a large amount of srIκB into exosomes. We showed that intraperitoneal injection of purified srIκB-loaded exosomes (Exo-srIκBs) attenuates mortality and systemic inflammation in septic mouse models. In a biodistribution study, Exo-srIκBs were observed mainly in the neutrophils, and in monocytes to a lesser extent, in the spleens and livers of mice. Moreover, we found that Exo-srIκB alleviates inflammatory responses in monocytic THP-1 cells and human umbilical vein endothelial cells.
Exosomes are cell-secreted nano-sized vesicles which deliver diverse biological molecules for intercellular communication. Due to their therapeutic potential, exosomes have been engineered in numerous ways for efficient delivery of active pharmaceutical ingredients to various target organs, tissues, and cells. In vivo administered exosomes are normally delivered to the liver, spleen, kidney, lung, and gastrointestinal tract and show rapid clearance from the blood circulation after systemic injection. The biodistribution and pharmacokinetics (PK) of exosomes can be modulated by engineering various factors such as cellular origin and membrane protein composition of exosomes. Recent advances accentuate the potential of targeted delivery of engineered exosomes even to the most challenging organs including the central nervous system. Major breakthroughs have been made related to various imaging techniques for monitoring in vivo biodistribution and PK of exosomes, as well as exosomal surface engineering technologies for inducing targetability. For inducing targeted delivery, therapeutic exosomes can be engineered to express various targeting moieties via direct modification methods such as chemically modifying exosomal surfaces with covalent/non-covalent bonds, or via indirect modification methods by genetically engineering exosome-producing cells. In this review, we describe the current knowledge of biodistribution and PK of exosomes, factors determining the targetability and organotropism of exosomes, and imaging technologies to monitor in vivo administered exosomes. In addition, we highlight recent advances in strategies for inducing targeted delivery of exosomes to specific organs and cells.
Exosomes have attracted considerable attention as drug delivery vehicles because their biological properties can be utilized for selective delivery of therapeutic cargoes to disease sites. In this context, analysis of the in vivo behaviors of exosomes in a diseased state is required to maximize their therapeutic potential as drug delivery vehicles. In this study, we investigated biodistribution and pharmacokinetics of HEK293T cell-derived exosomes and PEGylated liposomes, their synthetic counterparts, into healthy and sepsis mice. We found that biodistribution and pharmacokinetics of exosomes were significantly affected by pathophysiological conditions of sepsis compared to those of liposomes. In the sepsis mice, a substantial number of exosomes were found in the lung after intravenous injection, and their prolonged blood residence was observed due to the liver dysfunction. However, liposomes did not show such sepsis-specific effects significantly. These results demonstrate that exosome-based therapeutics can be developed to manage sepsis and septic shock by virtue of their sepsis-specific in vivo behaviors.
Antigen delivery through an oral route requires overcoming multiple challenges, including gastrointestinal enzymes, mucus, and epithelial tight junctions. Although each barrier has a crucial role in determining the final efficiency of the oral vaccination, transcytosis of antigens through follicle-associated epithelium (FAE) represents a major challenge. Most of the research is focused on delivering an antigen to the M-cell for FAE transcytosis because M-cells can easily transport the antigen from the luminal site. However, the fact is that the M-cell population is less than 1% of the total gastrointestinal cells, and most of the oral vaccines have failed to show any effect in clinical trials. To challenge the current dogma of M-cell targeting, in this study, we designed a novel tandem peptide with a FAE-targeting peptide at the front position and a cell-penetrating peptide at the back position. The tandem peptide was attached to a smart delivery system, which overcomes the enzymatic barrier and the mucosal barrier. The result showed that the engineered system could target the FAE (enterocytes and M-cells) and successfully penetrate the enterocytes to reach the dendritic cells located at the subepithelium dome. There was successful maturation and activation of dendritic cells in vitro confirmed by a significant increase in maturation markers such as CD40, CD86, presentation marker MHC I, and proinflammatory cytokines (TNF-α, IL-6, and IL-10). The in vivo results showed a high production of CD4+ T-lymphocytes (helper T-cell) and a significantly higher production of CD8+ T-lymphocytes (killer T-cell). Finally, the production of mucosal immunity (IgA) in the trachea, intestine, and fecal extracts and systemic immunity (IgG, IgG1, and IgG2a) was successfully confirmed. To the best of our knowledge, this is the first study that designed a novel tandem peptide to target the FAE, which includes M-cells and enterocytes rather than M-cell targeting and showed that a significant induction of both the mucosal and systemic immune response was achieved compared to M-cell targeting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.