With the ubiquity of advanced web technologies and location-sensing hand held devices, citizens regardless of their knowledge or expertise, are able to produce spatial information. The phenomena is known as Volunteered Geographic Information (VGI). During the last decade VGI has been used as a data source supporting a wide range of services such as environmental monitoring, events reporting, human movement analysis, disaster management etc. However, these volunteer contributed data also come with varying quality. Reasons for this are: data is produced by heterogeneous contributors, using various technologies and tools, having different level of details and precision, serving heterogeneous purposes, and a lack of gatekeepers. Crowd-sourcing, social, and geographic approaches have been proposed and later followed to develop appropriate methods to assess the quality measures and indicators of VGI. In this paper, we review various quality measures and indicators for selected types of VGI, and existing quality assessment methods. As an outcome, the paper presents a classification of VGI with current methods utilized to assess the quality of selected types of VGI. Through these findings we introduce data mining as an additional approach for quality handling in VGI.
With the development of information and communications technology, user-generated content and crowdsourced data are playing a large role in studies of transport and public health. Recently, Strava, a popular website and mobile app dedicated to tracking athletic activity (cycling and running), began offering a data service called Strava Metro, designed to help transportation researchers and urban planners to improve infrastructure for cyclists and pedestrians. Strava Metro data has the potential to promote studies of cycling and health by indicating where commuting and non-commuting cycling activities are at a large spatial scale (street level and intersection level). The assessment of spatially varying effects of air pollution during active travel (cycling or walking) might benefit from Strava Metro data, as a variation in air pollution levels within a city would be expected. In this paper, to explore the potential of Strava Metro data in research of active travel and health, we investigate spatial patterns of non-commuting cycling activities and associations between cycling purpose (commuting and non-commuting) and air pollution exposure at a large scale. Additionally, we attempt to estimate the number of non-commuting cycling trips according to environmental characteristics that may help identify cycling behavior. Researchers who are undertaking studies relating to cycling purpose could benefit from this approach in their use of cycling trip data sets that lack trip purpose. We use the Strava Metro Nodes data from Glasgow, United Kingdom in an empirical study. Empirical results reveal some findings that (1) when compared with commuting cycling activities, non-commuting cycling activities are more likely to be located in outskirts of the city; (2) spatially speaking, cyclists riding for recreation and other purposes are more likely to be exposed to relatively low levels of air pollution than cyclists riding for commuting; and (3) the method for estimating of the number of non-commuting cycling activities works well in this study. The results highlight: (1) a need for policymakers to consider how to improve cycling infrastructure and road safety in outskirts of cities; and (2) a possible way of estimating the number of non-commuting cycling activities when the trip purpose of cycling data is unknown.
Abstract:As it is widely accepted, cycling tends to produce health benefits and reduce air pollution. Policymakers encourage people to use bikes by improving cycling facilities as well as developing bicycle-sharing systems (BSS). It is increasingly interesting to investigate how environmental factors influence the cycling behavior of users of bicycle-sharing systems, as users of bicycle-sharing systems tend to be different from regular cyclists. Although earlier studies have examined effects of safety and convenience on the cycling behavior of regular riders, they rarely explored effects of safety and convenience on the cycling behavior of BSS riders. Therefore, in this study, we aimed to investigate how road safety, convenience, and public safety affect the cycling behavior of BSS riders by controlling for other environmental factors. Specifically, in this study, we investigated the impacts of environmental characteristics, including population density, employment density, land use mix, accessibility to point-of-interests (schools, shops, parks and gyms), road infrastructure, public transit accessibility, road safety, convenience, and public safety on the usage of BSS. Additionally, for a more accurate measure of public transit accessibility, road safety, convenience, and public safety, we used spatiotemporally varying measurements instead of spatially varying measurements, which have been widely used in earlier studies. We conducted an empirical investigation in Chicago with cycling data from a BSS called Divvy. In this study, we particularly attempted to answer the following questions: (1) how traffic accidents and congestion influence the usage of BSS; (2) how violent crime influences the usage of BSS; and (3) how public transit accessibility influences the usage of BSS. Moreover, we tried to offer implications for policies aiming to increase the usage of BSS or for the site selection of new docking stations. Empirical results demonstrate that density of bicycle lanes, public transit accessibility, and public safety influence the usage of BSS, which provides answers for our research questions. Empirical results also suggest policy implications that improving bicycle facilities and reducing the rate of violent crime rates tend to increase the usage of BSS. Moreover, some environmental factors could be considered in selecting a site for a new docking station.
Nowadays, Volunteered Geographic Information (VGI) has increasingly gained attractiveness to both amateur users and professionals. Using data generated from the crowd has become a hot topic for several application domains including transportation. However, there are concerns regarding the quality of such datasets. As one of the most famous crowdsourced mapping platforms, we analyze the fitness for use of OpenStreetMap (OSM) database for routing and navigation of people with limited mobility. We assess the completeness of OSM data regarding sidewalk information. Relevant attributes for sidewalk information such as sidewalk width, incline, surface texture, etc. are considered, and through both extrinsic and intrinsic quality analysis methods, we present the results of fitness for use of OSM data for routing services of disabled persons. Based on empirical results, it is concluded that OSM data of relatively large spatial extents inside all studied cities could be an acceptable region of interest to test and evaluate wheelchair routing and navigation services, as long as other data quality parameters such as positional accuracy and logical consistency are checked and proved to be acceptable. We present an extended version of OSMatrix web service and explore how it is employed to perform spatial and temporal analysis of sidewalk data completeness in OSM. The tool is beneficial for piloting activities, whereas the pilot site planners can query OpenStreetMap and visualize the degree of sidewalk data availability in a certain region of interest. This would allow identifying the areas that data are mostly missing and plan for data collection events. Furthermore, empirical results of data completeness for several OSM data indicators and their potential relation to sidewalk data completeness are presented and discussed. Finally, the article ends with an outlook for future research study in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.