Carbon-based molecular junctions consisting of aromatic oligomers between conducting sp hybridized carbon electrodes exhibit structure-dependent current densities (J) when the molecular layer thickness (d) exceeds ∼5 nm. All four of the molecular structures examined exhibit an unusual, nonlinear ln J vs bias voltage (V) dependence which is not expected for conventional coherent tunneling or activated hopping mechanisms. All molecules exhibit a weak temperature dependence, with J increasing typically by a factor of 2 over the range of 200-440 K. Fluorene and anthraquinone show linear plots of ln J vs d with nearly identical J values for the range d = 3-10 nm, despite significant differences in their free-molecule orbital energy levels. The observed current densities for anthraquinone, fluorene, nitroazobenzene, and bis-thienyl benzene for d = 7-10 nm show no correlation with occupied (HOMO) or unoccupied (LUMO) molecular orbital energies, contrary to expectations for transport mechanisms based on the offset between orbital energies and the electrode Fermi level. UV-vis absorption spectroscopy of molecular layers bonded to carbon electrodes revealed internal energy levels of the chemisorbed films and also indicated limited delocalization in the film interior. The observed current densities correlate well with the observed UV-vis absorption maxima for the molecular layers, implying a transport mechanism determined by the HOMO-LUMO energy gap. We conclude that transport in carbon-based aromatic molecular junctions is consistent with multistep tunneling through a barrier defined by the HOMO-LUMO gap, and not by charge transport at the electrode interfaces. In effect, interfacial "injection" at the molecule/electrode interfaces is not rate limiting due to relatively strong electronic coupling, and transport is controlled by the "bulk" properties of the molecular layer interior.
Large area molecular junctions were fabricated on electron-beam deposited carbon (eC) surfaces with molecular layers in the range of 2-5.5 nm between conducting, amorphous carbon contacts. Incorporating eC as an interconnect between Au and the molecular layer improves substrate roughness, prevents electromigration and uses well-known electrochemistry to form a covalent C-C bond to the molecular layer. Au/eC/anthraquinone/eC/Au junctions were fabricated on Si/SiOx with high yield and reproducibility and were unchanged by 10(7) current-voltage cycles and temperatures between 80 and 450 K. Au/eC/AQ/eC/Au devices fabricated on plastic films were unchanged by 10(7) current density vs bias voltage (J-V) cycles and repeated bending of the entire assembled junction. The low sheet resistance of Au/eC substrates permitted junctions with sufficiently transparent electrodes to conduct Raman or UV-vis absorption spectroscopy in either reflection or transmission geometries. Lithographic patterning of Au/eC substrates permitted wafer-scale integration yielding 500 devices on 20 chips on a 100 mm diameter wafer. Collectively, eC on Au provides a platform for fabrication and operation of chemically stable, optically and electrically functional molecules on rigid or flexible materials. The relative ease of processing and the robustness of molecular junctions incorporating eC layers should help address the challenge of economic fabrication of practical, flexible molecular junctions for a potentially wide range of applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.