Nowadays, many online users find the selection of information and required products challenging due to the growing volume of data on the web. Recommender systems are introduced to deal with information overload. Cold start and data sparsity are the two primary issues in these systems, which lead to a decrease in the efficiency of recommender systems. To solve the problems, this paper proposes a novel method based on social network analysis. Our method leverages a multi-agent system for clustering users and items and predicting relationships between them simultaneously. The information on users and items is extracted from the user-item matrix as distinct graphs. Each of the graphs is then treated as a social network, which is further processed and analyzed by community detection and link prediction procedures. The users are grouped into several clusters by the community detection agent, which results in each cluster as a community. Then link prediction agent identifies the latent relationships between users and items. Simulation results show that the proposed method has significantly improved performance metrics as compared to recent techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.