Wind farm power production is known to be strongly affected by turbine wake effects. The purpose of this study is to develop and test a new analytical model for the prediction of wind turbine wakes and the associated power losses in wind farms. The new model is an extension of the one recently proposed by Bastankhah and Porté-Agel for the wake of stand-alone wind turbines. It satisfies the conservation of mass and momentum and assumes a self-similar Gaussian shape of the velocity deficit. The local wake growth rate is estimated based on the local streamwise turbulence intensity. Superposition of velocity deficits is used to model the interaction of the multiple wakes. Furthermore, the power production from the wind turbines is calculated using the power curve. The performance of the new analytical wind farm model is validated against power measurements and large-eddy simulation (LES) data from the Horns Rev wind farm for a wide range of wind directions, corresponding to a variety of full-wake and partial-wake conditions. A reasonable agreement is found between the proposed analytical model, LES data, and power measurements. Compared with a commonly used wind farm wake model, the new model shows a significant improvement in the prediction of wind farm power.
Water impoundment by dams strongly affects the river natural flow regime, its attributes and the related ecosystem biodiversity. Fostering the sustainability of water uses e.g., hydropower systems thus implies searching for innovative operational policies able to generate Dynamic Environmental Flows (DEF) that mimic natural flow variability. The objective of this study is to propose a Direct Policy Search (DPS) framework based on defining dynamic flow release rules to improve the global efficiency of storage systems. The water allocation policies proposed for dammed systems are an extension of previously developed flow redistribution rules for small hydropower plants by Razurel et al. (Water resources management, 30, 207-223 (2016)).The mathematical form of the Fermi-Dirac statistical distribution applied to lake equations for the stored water in the dam is used to formulate non-proportional redistribution rules that partition the flow for energy production and environmental use. While energy production is computed from technical data, riverine ecological benefits associated with DEF are computed by integrating the Weighted Usable Area (WUA) for fishes with Richter's hydrological indicators.Then, multiobjective evolutionary algorithms (MOEAs) are applied to build ecological versus economic efficiency plot and locate its (Pareto) frontier. This study benchmarks two MOEAs (NSGA II and Borg MOEA) and compares their efficiency in terms of the quality of Pareto's frontier and computational cost. A detailed analysis of dam characteristics is performed to examine their impact on the global system efficiency and choice of the best redistribution rule. Finally, it is found that non-proportional flow releases can statistically improve the global © 2016. This manuscript version is made available under the Elsevier user license http://www.elsevier.com/open-access/userlicense/1.0/ 3 efficiency, specifically the ecological one, of the hydropower system when compared to constant minimal flows.
Biofilms are surface-attached and matrix-enclosed microbial communities that dominate microbial life in numerous ecosystems. Using flumes and automated optical coherence tomography, we studied the morphogenesis of phototrophic biofilms along a gradient of hydraulic conditions. Compact and coalescent biofilms formed under elevated bed shear stress, whereas protruding clusters separated by troughs formed under reduced shear stress. This morphological differentiation did not linearly follow the hydraulic gradient, but a break point emerged around a shear stress of~0.08 Pa. While community composition did not differ between high and low shear environments, our results suggest that the morphological differentiation was linked to biomass displacement and reciprocal interactions between the biofilm structure and hydraulics. Mapping oxygen concentrations within and around biofilm structures, we provide empirical evidence for biofilm-induced alterations of oxygen mass transfer. Our findings suggest that architectural plasticity, efficient mass transfer, and resistance to shear stress contribute to the success of phototrophic biofilms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.