The dynamics of the imidazolium based room temperature ionic liquid Bmim Tf2N was investigated by means of nuclear magnetic resonance relaxation dispersion (NMRD) and nuclear magnetic resonance pulsed field gradient (NMR-PFG) diffusion experiments on the bulk liquid in a wide range of temperatures. Relaxation and diffusion properties were determined for anions and cations individually, giving evidence of heterogeneities in the dynamics of the ionic liquid. The relevant NMR relaxation mechanisms are the inter- and intramolecular dipolar interactions between the molecular ions reflecting the molecular translational and rotational diffusion. Rotational and translational correlation times could be obtained and showed different dependences on temperature. The experimental diffusion values follow the Vogel-Fulcher-Tammann (VFT) relation above a transition temperature Tc∼ 1.26 Tg, below which a deviation was observed. Differential scanning calorimetry experiments show a transition at the same temperature.
The molecular dynamics of the room-temperature ionic liquid 1-butyl-3methylimidazolium bis(trifluoromethylsulfonyl)imide (Bmim Tf2N) confined in porous glass is studied by nuclear magnetic resonance (NMR) relaxometry and diffusometry and is compared with the bulk dynamics over a wide temperature range. The molecular reorientation processes for anions and cations alike are found to be significantly affected by the presence of the glass interface at high temperatures. In this respect, the ionic liquid behaves similarly to polar liquids where proton NMR relaxation is governed by reorientations mediated by translational displacements (RMTDs). This process becomes less significant towards lower temperatures when the characteristic translational correlation times of the ions approach a timescale comparable with those of the RMTD process, and the relaxation dispersions in bulk and in confinement become similar below a temperature corresponding to about 1.2T g , a value where the onset of dynamic heterogeneity has been observed before. The self-diffusion coefficient, on the other hand, is found to be strongly reduced than the bulk within the accessible temperature range of 248 K and above and is significantly slower than expected from the tortuosity effect, suggesting that ion-surface interactions affect the macroscopic properties.
The molecular dynamics of alkyl methylimidazolium bromide ionic liquids with different side groups of the cation are studied over a wide range of temperatures, covering the supercooled and crystalline states. Nuclear magnetic resonance relaxation dispersion (NMRD) at different magnetic field strengths was combined with NMR pulsed field gradient (PFG) diffusion measurements in order to obtain a description of the temperature dependence of the cationic mobility. While an Arrhenius dependence of the correlation times was found at high temperatures, a deviation is observed below a critical temperature of T ∼ 275 K which corresponds to about 1.25 T for two of the substances. The macroscopic diffusion coefficient, on the other hand, is best described by a VFT dependence down to a similar temperature, and a much weaker temperature dependence below. Measurements carried out in the crystalline state of 1-butyl-3-methylimidazolium bromide (Bmim Br) exhibit a dramatically increased self-diffusion coefficient in agreement with earlier reports of strong dynamic heterogeneity in the presence of minute amounts of water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.